pasternak elastic foundation
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 28)

H-INDEX

21
(FIVE YEARS 6)

Author(s):  
Ahmad Mamandi

In this study, bending deflection and stress analyses have been conducted for a thin skew plate made of functionally graded material (FGM) with different boundary conditions on the Winkler–Pasternak elastic foundation and under combined loads including uniform transverse load, normal and shear in-plane forces, and planar body forces. The Cartesian partial differential equation governing the bending deflection of the skew plate has been converted into a partial differential equation in oblique coordinates using the conversion relations. Then, by employing the variational principle and residual weighted Galerkin method and using the Extended Kantorovich Method (EKM), the equation has been converted to a set of linear differential equations in terms of two functions in the longitudinal and transverse directions of the oblique plate, and afterward, the equation has been solved using the iterative solution method. Different boundary conditions in a combined form of simply and clamped supports have been investigated and their effects on bending deflection and generated in-plane normal and shear stresses are discussed.


Author(s):  
Wachirawit SONGSUWAN ◽  
Monsak PIMSARN ◽  
Nuttawit WATTANASAKULPONG

The dynamic behavior of functionally graded (FG) sandwich beams resting on the Pasternak elastic foundation under an arbitrary number of harmonic moving loads is presented by using Timoshenko beam theory, including the significant effects of shear deformation and rotary inertia. The equation of motion governing the dynamic response of the beams is derived from Lagrange’s equations. The Ritz and Newmark methods are implemented to solve the equation of motion for obtaining free and forced vibration results of the beams with different boundary conditions. The influences of several parametric studies such as layer thickness ratio, boundary condition, spring constants, length to height ratio, velocity, excitation frequency, phase angle, etc., on the dynamic response of the beams are examined and discussed in detail. According to the present investigation, it is revealed that with an increase of the velocity of the moving loads, the dynamic deflection initially increases with fluctuations and then drops considerably after reaching the peak value at the critical velocity. Moreover, the distance between the loads is also one of the important parameters that affect the beams’ deflection results under a number of moving loads.


Author(s):  
Juan Sebastián Carvajal-Muñoz ◽  
Carlos Alberto Vega-Posada ◽  
Julio César Saldarriaga-Molina

This paper describes an analytical approach to conduct an analysis of beam-column elements with generalized end-boundary conditions on a homogeneous or non-homogeneous Pasternak elastic foundation. The mathematical formulation utilized herein is that presented by the senior author in a recent work. The differential equation (DE) governing the behavior of the beam-column element is solved using the differential transformation method (DTM). The DTM offers practical advantages over other conventional approaches when solving the proposed structural model. The proposed formulation provides the flexibility to account for i) combined lateral and axial load at the ends of the element, ii) homogeneous or non-homogeneous soil, iii) Pasternak elastic foundation, and iv) an external arbitrary transverse load acting on the element. The effects of various slenderness ratios, pile-soil stiffness ratios, and classical and semirigid boundary conditions can be easily studied with the proposed formulation. Examples are presented to validate the accuracy of the model and its applicability over a wide range of analyses.


Author(s):  
Ehsan Arshid ◽  
Saeed Amir

Size-dependent vibration analysis of three-layered fluid-infiltrated porous curved microbeams, which are integrated with nanocomposite face sheets, is provided in this work. The effect of the fluids within the pores of the core is taken into consideration and the core’s thermomechanical properties vary across the thickness based on three different patterns. Also, the face sheets are made from epoxy, which are reinforced by graphene platelets as lightweight and high-stiffness reinforcements. Graphene platelets dispersion patterns are also considered, which obey three different functions, namely parabolic, linear, and uniform. Moreover, effective thermomechanical properties of the face sheets are determined with the aid of ERM and Halpin–Tsai micromechanical models. The microstructure is under thermal load and it is rested on Pasternak elastic foundation. In the polar coordinate system, the strains are determined for deep curved beams that lead to more accurate results. Based on a refined higher-order shear deformation theory, which includes four variables and considers the thickness stretching effect, and employing the modified couple stress theory for accounting the size effect, the differential motion equations are derived and via an analytical method, they are solved. A verification study is conducted by neglecting some parameters and after that, the results are presented and discussed in detail. It is seen that the porous core and nanocomposite face sheets material properties have significant effects on the vibrational response of the under consideration model. Up to now, no similar work in the available literature has been found, therefore, the results of this study can be considered as a benchmark for future ones. The outcomes of this study may help to design more efficient structures with the desired properties.


Author(s):  
Piyush Pratap Singh ◽  
Mohammad Sikandar Azam

In the present work, effect of hygrothermal environment on vibration and buckling behavior of embedded functionally graded elliptical plate under uniform in plane compression is studied. The properties of elliptical plate vary in transverse direction following power law. The functionally graded elliptical plate is considered to be resting on the Winkler–Pasternak elastic foundation. The governing equations are derived using the principle of virtual work and solved by employing the Rayleigh–Ritz method. The algebraic polynomials are employed to satisfy the different boundary constraints. The advantage of the presented mathematical model over the previously reported methods is that it eliminates the constraints regarding edge conditions, and it is simple and computationally fast. The inclusive results depicting the effect of various parameters namely, material property exponents, foundation parameters, aspect ratio on mechanical and thermomechanical buckling, and natural frequency of embedded functionally graded elliptical plate in a hygrothermal environment are reported after the test of convergence and extensive comparisons. The study shows that increase in foundation moduli lead to an increase in natural frequency and buckling parameter. Furthermore, it is noticed that the temperature and moisture concentration remarkably affect the buckling and vibration behavior of functionally graded elliptical plate.


Sign in / Sign up

Export Citation Format

Share Document