In-plane material inhomogeneity of functionally graded plates: A higher-order shear deformation plate isogeometric analysis

2016 ◽  
Vol 106 ◽  
pp. 273-284 ◽  
Author(s):  
Shuohui Yin ◽  
Tiantang Yu ◽  
Tinh Quoc Bui ◽  
Xuejun Zheng ◽  
Satoyuki Tanaka
2015 ◽  
Vol 53 (6) ◽  
pp. 1143-1165 ◽  
Author(s):  
Sihame Ait Yahia ◽  
Hassen Ait Atmane ◽  
Mohammed Sid Ahmed Houari ◽  
Abdelouahed Tounsi

2014 ◽  
Vol 11 (06) ◽  
pp. 1350098 ◽  
Author(s):  
ABDERRAHMANE SAID ◽  
MOHAMMED AMEUR ◽  
ABDELMOUMEN ANIS BOUSAHLA ◽  
ABDELOUAHED TOUNSI

An improved simple hyperbolic shear deformation theory involving only four unknown functions, as against five functions in case of first or other higher-order shear deformation theories, is introduced for the analysis of functionally graded plates resting on a Winkler–Pasternak elastic foundation. The governing equations are derived by employing the principle of virtual work and the physical neutral surface concept. The accuracy of the present analysis is demonstrated by comparing some of the present results with those of the classical, the first-order and the other higher-order theories.


2013 ◽  
Vol 5 (03) ◽  
pp. 351-364 ◽  
Author(s):  
Tahar Hassaine Daouadji ◽  
Abdelouahed Tounsi ◽  
El Abbes Adda Bedia

AbstractIn this paper, a new displacement based high-order shear deformation theory is introduced for the static response of functionally graded plate. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, has strong similarity with classical plate theory in many aspects, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Numerical illustrations concerned flexural behavior of FG plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fraction profiles, aspect ratios and length to thickness ratios. The validity of the present theory is investigated by comparing some of the present results with those of the classical, the first-order and the other higher-order theories. It can be concluded that the proposed theory is accurate and simple in solving the static behavior of functionally graded plates.


Sign in / Sign up

Export Citation Format

Share Document