Improvement in bond behavior and thermal properties of carbon fiber-reinforced polymer strengthened steel structures

2021 ◽  
Vol 278 ◽  
pp. 114704
Author(s):  
Muye Yang ◽  
Jiajing Xie ◽  
Shigenobu Kainuma ◽  
Weijie Liu

2006 ◽  
Vol 33 (11) ◽  
pp. 1438-1449 ◽  
Author(s):  
Ayman S Kamel ◽  
Alaa E Elwi ◽  
Roger J.J Cheng

This paper presents a study on the interfacial behavior of carbon fiber reinforced polymer (CFRP) sheets when applied to concrete members as external reinforcement. Two bond test methods that are detailed in the paper were used in separate test series to study the bond behavior and failure mechanism of CFRP sheets bonded to concrete. A modified push-apart test method was proposed and tested. It was concluded that there existed an effective length beyond which there will be no increase in the ultimate capacity of the joint. An experimental test method to determine the effective bond length was also proposed and tested. The strains at the edge of the CFRP sheets are consistently higher than those at the center. The anchorage requirements for the CFRP sheets were also investigated in this study. Anchor sheets placed at 90° to the primary test sheets and bonded underneath the tested sheet showed better or equivalent overall bond behavior compared with those bonded on top of the tested sheet. The distance at which the anchor sheet is placed from the crack does not appear to change the bond behavior.Key words: bond, concrete, debonding, failure mechanism, carbon fiber reinforced polymer (CFRP) sheets, anchor sheets.





2011 ◽  
Vol 675-677 ◽  
pp. 559-562
Author(s):  
Shan Li ◽  
Hui Tao Ren ◽  
Yi Yan Lu ◽  
Mu Huan Shi

Carbon fiber-reinforced polymer (CFRP) material is increasingly being used for the repair of steel structures, mainly because of their superior mechanical properties. However, there is insufficient information on the environmental durability of CFRP-steel bond, especially in hygrothermal aging combined with sustained load. In this paper, 500 mm long І steel beam specimens reinforced with externally bonded wet-laid CFRP sheets are investigated. The specimens are subjected to a sustained four point flexural load of about 30% of initial ultimate load, placed into hygrothermal condition. The ultimate bear capacity and the failure characteristics of the CFRP and steel interface are studied after hydrothermal age and loading. The test results show that the coupled action of sustained load and hygrothermal aging reduces the bond strength of CFRP-steel, even for relatively short conditioning periods, and appears to significantly affect the failure characteristics of specimens.



Sign in / Sign up

Export Citation Format

Share Document