Hierarchical reinforcement learning and decision making

2012 ◽  
Vol 22 (6) ◽  
pp. 956-962 ◽  
Author(s):  
Matthew Michael Botvinick
2021 ◽  
Author(s):  
Daoming Lyu ◽  
Fangkai Yang ◽  
Hugh Kwon ◽  
Bo Liu ◽  
Wen Dong ◽  
...  

Human-robot interactive decision-making is increasingly becoming ubiquitous, and explainability is an influential factor in determining the reliance on autonomy. However, it is not reasonable to trust systems beyond our comprehension, and typical machine learning and data-driven decision-making are black-box paradigms that impede explainability. Therefore, it is critical to establish computational efficient decision-making mechanisms enhanced by explainability-aware strategies. To this end, we propose the Trustworthy Decision-Making (TDM), which is an explainable neuro-symbolic approach by integrating symbolic planning into hierarchical reinforcement learning. The framework of TDM enables the subtask-level explainability from the causal relational and understandable subtasks. Besides, TDM also demonstrates the advantage of the integration between symbolic planning and reinforcement learning, reaping the benefits of both worlds. Experimental results validate the effectiveness of proposed method while improving the explainability in the process of decision-making.


2014 ◽  
Vol 369 (1655) ◽  
pp. 20130480 ◽  
Author(s):  
Matthew Botvinick ◽  
Ari Weinstein

Recent work has reawakened interest in goal-directed or ‘model-based’ choice, where decisions are based on prospective evaluation of potential action outcomes. Concurrently, there has been growing attention to the role of hierarchy in decision-making and action control. We focus here on the intersection between these two areas of interest, considering the topic of hierarchical model-based control. To characterize this form of action control, we draw on the computational framework of hierarchical reinforcement learning, using this to interpret recent empirical findings. The resulting picture reveals how hierarchical model-based mechanisms might play a special and pivotal role in human decision-making, dramatically extending the scope and complexity of human behaviour.


2020 ◽  
Vol 14 (5) ◽  
pp. 297-305 ◽  
Author(s):  
Jingliang Duan ◽  
Shengbo Eben Li ◽  
Yang Guan ◽  
Qi Sun ◽  
Bo Cheng

Author(s):  
Fangkai Yang ◽  
Daoming Lyu ◽  
Bo Liu ◽  
Steven Gustafson

Reinforcement learning and symbolic planning have both been used to build intelligent autonomous agents. Reinforcement learning relies on learning from interactions with real world, which often requires an unfeasibly large amount of experience. Symbolic planning relies on manually crafted symbolic knowledge, which may not be robust to domain uncertainties and changes. In this paper we present a unified framework PEORL that integrates symbolic planning with hierarchical reinforcement learning (HRL) to cope with decision-making in dynamic environment with uncertainties. Symbolic plans are used to guide the agent's task execution and learning, and the learned experience is fed back to symbolic knowledge to improve planning. This method leads to rapid policy search and robust symbolic plans in complex domains. The framework is tested on benchmark domains of HRL.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Batel Yifrah ◽  
Ayelet Ramaty ◽  
Genela Morris ◽  
Avi Mendelsohn

AbstractDecision making can be shaped both by trial-and-error experiences and by memory of unique contextual information. Moreover, these types of information can be acquired either by means of active experience or by observing others behave in similar situations. The interactions between reinforcement learning parameters that inform decision updating and memory formation of declarative information in experienced and observational learning settings are, however, unknown. In the current study, participants took part in a probabilistic decision-making task involving situations that either yielded similar outcomes to those of an observed player or opposed them. By fitting alternative reinforcement learning models to each subject, we discerned participants who learned similarly from experience and observation from those who assigned different weights to learning signals from these two sources. Participants who assigned different weights to their own experience versus those of others displayed enhanced memory performance as well as subjective memory strength for episodes involving significant reward prospects. Conversely, memory performance of participants who did not prioritize their own experience over others did not seem to be influenced by reinforcement learning parameters. These findings demonstrate that interactions between implicit and explicit learning systems depend on the means by which individuals weigh relevant information conveyed via experience and observation.


Sign in / Sign up

Export Citation Format

Share Document