markov game
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 25)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Bingjie Lin ◽  
Jie Cheng ◽  
Jiahui Wei ◽  
Ang Xia

The sensing of network security situation (NSS) has become a hot issue. This paper first describes the basic principle of Markov model and then the necessary and sufficient conditions for the application of Markov game model. And finally, taking fuzzy comprehensive evaluation model as the theoretical basis, this paper analyzes the application fields of the sensing method of NSS with Markov game model from the aspects of network randomness, non-cooperative and dynamic evolution. Evaluation results show that the sensing method of NSS with Markov game model is best for financial field, followed by educational field. In addition, the model can also be used in the applicability evaluation of the sensing methods of different industries’ network security situation. Certainly, in different categories, and under the premise of different sensing methods of network security situation, the proportions of various influencing factors are different, and once the proportion is unreasonable, it will cause false calculation process and thus affect the results.


2022 ◽  
pp. 1780-1807
Author(s):  
Jian Li ◽  
Daogao Liu
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7931
Author(s):  
Xinzhi Li ◽  
Shengbo Dong

Modern radar jamming scenarios are complex and changeable. In order to improve the adaptability of frequency-agile radar under complex environmental conditions, reinforcement learning (RL) is introduced into the radar anti-jamming research. There are two aspects of the radar system that do not obey with the Markov decision process (MDP), which is the basic theory of RL: Firstly, the radar cannot confirm the interference rules of the jammer in advance, resulting in unclear environmental boundaries; secondly, the radar has frequency-agility characteristics, which does not meet the sequence change requirements of the MDP. As the existing RL algorithm is directly applied to the radar system, there would be problems, such as low sample utilization rate, poor computational efficiency and large error oscillation amplitude. In this paper, an adaptive frequency agile radar anti-jamming efficient RL model is proposed. First, a radar-jammer system model based on Markov game (MG) established, and the Nash equilibrium point determined and set as a dynamic environment boundary. Subsequently, the state and behavioral structure of RL model is improved to be suitable for processing frequency-agile data. Experiments that our proposal effectively the anti-jamming performance and efficiency of frequency-agile radar.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 321
Author(s):  
Julio B. Clempner ◽  
Alexander S. Poznyak

A theme that become common knowledge of the literature is the difficulty of developing a mechanism that is compatible with individual incentives that simultaneously result in efficient decisions that maximize the total reward. In this paper, we suggest an analytical method for computing a mechanism design. This problem is explored in the context of a framework, in which the players follow an average utility in a non-cooperative Markov game with incomplete state information. All of the Nash equilibria are approximated in a sequential process. We describe a method for the derivative of the player’s equilibrium that instruments the design of the mechanism. In addition, it showed the convergence and rate of convergence of the proposed method. For computing the mechanism, we consider an extension of the Markov model for which it is introduced a new variable that represents the product of the mechanism design and the joint strategy. We derive formulas to recover the variables of interest: mechanisms, strategy, and distribution vector. The mechanism design and equilibrium strategies computation differ from those in previous literature. A numerical example presents the usefulness and effectiveness of the proposed method.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yu Zhao ◽  
Jifeng Guo ◽  
Chengchao Bai ◽  
Hongxing Zheng

A deep reinforcement learning-based computational guidance method is presented, which is used to identify and resolve the problem of collision avoidance for a variable number of fixed-wing UAVs in limited airspace. The cooperative guidance process is first analyzed for multiple aircraft by formulating flight scenarios using multiagent Markov game theory and solving it by machine learning algorithm. Furthermore, a self-learning framework is established by using the actor-critic model, which is proposed to train collision avoidance decision-making neural networks. To achieve higher scalability, the neural network is customized to incorporate long short-term memory networks, and a coordination strategy is given. Additionally, a simulator suitable for multiagent high-density route scene is designed for validation, in which all UAVs run the proposed algorithm onboard. Simulated experiment results from several case studies show that the real-time guidance algorithm can reduce the collision probability of multiple UAVs in flight effectively even with a large number of aircraft.


Sign in / Sign up

Export Citation Format

Share Document