Testing of full-scale concrete bridge deck slabs reinforced with fiber-reinforced polymer (FRP) bars

2011 ◽  
Vol 25 (10) ◽  
pp. 3956-3965 ◽  
Author(s):  
K. Bouguerra ◽  
E.A. Ahmed ◽  
S. El-Gamal ◽  
B. Benmokrane
2007 ◽  
Vol 34 (3) ◽  
pp. 298-310 ◽  
Author(s):  
Brahim Benmokrane ◽  
Ehab El-Salakawy ◽  
Amr El-Ragaby ◽  
Sherif El-Gamal

This paper presents the construction details, field testing, and analytical results of six innovative concrete bridges reinforced with fibre-reinforced-polymer (FRP) bars recently constructed in North America, namely Wotton, Magog, Cookshire-Eaton, Val-Alain, and Melbourne bridges in Quebec, Canada, and Morristown bridge in Vermont, USA. All six bridges are girder type, with main girders made of either steel or prestressed concrete. The main girders are supported over spans ranging from 26.2 to 50.0 m. The deck is a 200–230 mm thick concrete slab continuous over spans of 2.30–3.15 m. Different types of glass- and carbon-FRP reinforcing bars and conventional steel were used as reinforcement for the concrete deck slab. The six bridges are located on different highway categories, which means different traffic volume and environmental conditions. The bridges are well instrumented at critical locations for internal temperature and strain data collection using fibre optic sensors. These sensors are used to monitor the deck behaviour from the time of construction to several years after the completion of construction. The bridges were tested for service performance using calibrated truckloads. In parallel, a finite element analysis (FEA) was conducted and verified against the results of the field load tests. The FEA was then used to run parametric studies to investigate the effect of several important parameters such as FRP reinforcement type and ratio on the service and ultimate behaviour of these bridge decks. The analytical and field results under real service conditions, in terms of deflections, cracking, and strains in reinforcement and concrete, were comparable to those of concrete bridge deck slabs reinforced with steel.Key words: bridges deck slabs, fibre-reinforced-polymer (FRP) bars, field testing, finite element analysis.


2010 ◽  
Vol 163-167 ◽  
pp. 1139-1142
Author(s):  
Yu Zheng ◽  
Yun Feng Pan

The corrosion of reinforcement embedded in concrete bridge deck slabs has been the cause of major deterioration and of high costs in repair and maintenance. Fibre reinforced polymers (FRP) exhibit high durability in combination with high strength and light weight. The majority of research with FRP bars for reinforcing concrete has been on simply supported beams and slabs where the low value of elasticity of FRP has meant that the service behaviour has been critical. These differences have been attributed to the low value of elasticity of many FRPs compared to steel. However, laterally restrained slabs, such as those in bridge deck slabs, exhibit arching action or compressive membrane action (CMA), which has a beneficial influence on the service behaviour such as the deflection. Based on the previous research on CMA in steel reinforced concrete bridge deck slabs, a modified theoretical method were established according to the material properties of GFRP reinforcement. The proposed prediction method showed a good collection of some reported GFRP reinforced slabs experimental tests.


Sign in / Sign up

Export Citation Format

Share Document