ultimate capacity
Recently Published Documents


TOTAL DOCUMENTS

321
(FIVE YEARS 74)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Vol 12 (1) ◽  
pp. 1-28
Author(s):  
Y. H. Kim ◽  
S. H. Chow ◽  
M. S. Hossain ◽  
J. Zhao ◽  
S. Rohan

This paper reports the results from field tests on a 1/15th scale recently developed fish anchor. The tests were conducted at three locations in the Swan River, Perth. Two series of tests were performed from the Burswood and Maylands jetties with water depths between 1.1 and 1.9 m. The final series of tests were undertaken in deeper waters of 2.6 m from a barge. The riverbed at the Burswood Jetty and barge test location consisted of soft clay, and that at the Maylands Jetty comprised sandy silt. The tip embedment depths of the scaled fish anchor, with dry weight of 0.304 kN and impact velocity of 5.89∼9.55 m/s, in soft clay were 1.17∼2.40 times the anchor length. For similar impact velocities, the tip embedment depths in sandy silt were 30 ∼ 60% shallower than those in soft clay. By comparing the field test data in clay, the fish anchor achieved normalised embedment depths similar to those of the torpedo and OMNI-Max anchors under half or less impact velocity. Most importantly, the field tests confirmed the diving behaviour of the fish anchor under loading with mudline inclination of 20° and 25°, with the second peak dictated the capacity. The ultimate capacity was 5∼7 times the anchor submerged weight in water.


2022 ◽  
Vol 250 ◽  
pp. 113471
Author(s):  
Abdelaziz Nabil ◽  
Hamdy M. Afefy ◽  
Nesreen M. Kassem

Buildings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Shijun Wang ◽  
Zan Wang ◽  
Chang Ping ◽  
Xing Wang ◽  
Huiying Wu ◽  
...  

The light weight and high strength-to-mass ratio of thin-walled boxed sections have incited interest in their widespread use in the construction of domes. However, the installation of these sections in forming the dome geometry has induced initial twists and curving features, to which their mechanical response has rarely been explored. Therefore, the structural performance of a structure with thin-walled twisted box sections is numerically studied in this paper, employing ANSYS, the verification of which is carried out through a comparison with experimental results. Additional components examined include the longitudinal stiffening rib, diaphragm, and web. The effects of variations in the thicknesses of these member plates on the mechanical behaviors are investigated. In general, the ultimate capacity of the structure is improved by increasing the thickness of the longitudinal stiffening rib, diaphragm, and web, but the strengthening effect of the stiffener is limited by a certain thickness enhancement. The common failure mode of the initial model is found to be an overall elastic-plastic buckling. A reduction in the thickness of the stiffener or web creates a curving deformation zone in the lower arch at the ultimate capacity, whereas the diaphragm thickness has little effect on the failure mode of the model.


2021 ◽  
Vol 14 (4) ◽  
pp. 98-112
Author(s):  
Wisam AL-Karawi ◽  
Abdullah A. Talal ◽  
Baidaa N. Hassan ◽  
Khattab S. Abdul-Razzaq

The current work investigates the behavior and strength of T-shaped cross section ring deep beams through a Finite element parametric study. Currently, ring diameter, loading type, concrete compressive strength and number of supports are taken into consideration. It is found that increasing ring diameter of beam by 12.5-25% leads to increase the maximum positive moment, maximum negative moment, maximum torsional moment and midspan deflection by 1.1-2.2%, 2.2-4.3%, 3-6% and 16-33%, respectively, while the load ultimate capacity increases by 11-17%. The positive and torsional moments at midspan and midspan deflection decrease by 23-36%, 3-11% and 6-14%, respectively when the loading type varies from concentered to full uniformly load over a span length of 33, 50, 67 and 100%, respectively. In a related context, this change in load type leads the negative moment at support and the load ultimate capacity to increase by 2-21% and 6-85%, respectively. The midspan positive moment, negative moment, torsional moment and load ultimate capacity increase by 20.4-71.3%, 20-69.7%, 15.6-43.8% and 21-73%, respectively, whereas deflection decreases by 1.4-11%, when increasing the compressive concrete strength by 45-190%. Finally, it is found that the load ultimate capacity increases by 82-348%, when number of supports increases by 25-100%, while torsional moment, maximum positive moments, maximum negative moments and midspan deflection decrease by 11-50%, 38-76.4%, 38.6-76.8% and 14-39%, respectively due to this increase in the number of supports.


Modelling ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 567-590
Author(s):  
Sofia Antonodimitraki ◽  
Pavlos Thanopoulos ◽  
Ioannis Vayas

The behaviour of steel structures is affected by two nonlinearities—the geometric and material nonlinearity—and by the unavoidable presence of imperfections. To evaluate the ultimate capacity of a structure, these effects should be taken into consideration during the design process, either explicitly in the analysis or implicitly through the verification checks. In this context, Eurocode 3 provides several design approaches of different complexity and accuracy. The advantages and disadvantages of these approaches are discussed. Five different methods in conformity with the Eurocode provisions are applied for the design of four moment resisting steel frames of varying slenderness. The influence of nonlinearities and imperfections in respect to the slenderness of the structure is illustrated. The examined methods are compared in terms of the predicted ultimate capacity and their efficiency is assessed against the most accurate between them, i.e., an advanced geometrically and materially nonlinear analysis. It is shown that considerable differences arise between the methods. Nevertheless, except for the commonly used 2nd order analysis followed by cross-section verifications, the remaining methods are mostly on the safe side.


2021 ◽  
Vol 11 (21) ◽  
pp. 10073
Author(s):  
Xide Zhang ◽  
Chengyi Zou ◽  
Xiaoqi Yin

SentryGlas® Plus (SGP) laminated glass is a novel type of safety glass with high strength and stiffness. On the other hand, cold bending is a novel technique to build curved glass curtain walls, and is advantageous in terms of its greater energy efficiency and cost-effectiveness as well as its simple construction processes. The cold bending of SGP laminated glass could result in broad applications for the material and provide huge economic benefits in the field of glass curtain wall construction. To study cold-bending stress and its reverse-coupling effect with the uniform load in SGP laminated glass panels, single-corner cold-bending tests, uniform load tests, and ultimate capacity tests were conducted on eight pieces of such panels with different cold-bending curvatures and interlayer thicknesses. The results revealed that cold-bending stress in the glass panels under single-corner cold bending demonstrated a saddle-shaped distribution, with the maximum and second-largest cold-bending stresses located near the corner of the short side and the long side adjacent to the cold-bending corner, respectively. The cold-bending stress and coupling stress increased nonlinearly as the cold-bending curvature rose and the interlayer thickness became greater. Moreover, cold-bending curvature was a factor that affected the cold-bending stress and coupling stress more significantly than the interlayer thickness. The ultimate capacity and ultimate deflection of the glass panels decreased as the cold-bending curvature and interlayer thickness grew.


CivilEng ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 929-942
Author(s):  
Mohamed A. Shaheen ◽  
Mohamed Ahmed Galal ◽  
Lee S. Cunningham ◽  
Andrew S. J. Foster

A novel method to improve the robustness of steel end plate connections is presented in this paper. Existing commonly adopted techniques alter the stiffness of the beam or the end plate to improve the connection’s robustness. In this study, the robustness is enhanced by improving the contribution of the bolts to the rotational capacity of connections; the higher the bolts’ elongation, the higher the rotational capacity that can be achieved. However, the brittleness of the bolt material, combined with its small length, results in negligible elongation. Alternatively, the load path between the end plate and the bolts can be interrupted with a ductile element to achieve the required elongation. This can be achieved by inserting a steel sleeve with a designated length, thickness, and wall curvature between the end plate and the washer. The proposed sleeve should be designed so that its ultimate capacity is less than the force in the bolt at failure; accordingly, the sleeve develops a severe bending deformation before the failure of any connection components. Using a validated finite element model, end plate connections with various parameters are numerically investigated to understand the performance of the sleeve device. The proposed system substantially enhances the rotational capacity of the connections, ranging between 1.37 and 2.46 times that of the standard connection. It is also concluded that the sleeved connections exhibit a consistent elastic response with the standard connections, indicating the proposed system is compatible with codified elastic design approaches without modification. Furthermore, for a specific connection, various ductile responses can be achieved without altering the connection capacity nor configuration.


2021 ◽  
Vol 1047 ◽  
pp. 220-226
Author(s):  
Md Nasir Uddin ◽  
Ling Zhi Li ◽  
Raja Khurram Mahmood Khan ◽  
Farhan Shahriar ◽  
Landry Wilfried Tim Sob

The estimation of the ultimate capacity of rectangular or circular shaped steel tubular members filled with concrete, such as columns, beams, and beam-column connections, requires a detailed structural study to be carried out. Therefore, identify the concrete strength the member subjected to axial-load only. Using the Levenberg-Marquardt artificial neural network, this paper investigates the concrete-filled steel tubular (CFT) members axial strength. 201 experimental specimens were collected from the literature to obtain the best results, and a wide range of geometric and material properties of CFT members were included. The proposed design and specimens illustrate the practicality and effectiveness of the chosen CFT column approach to classify real structural results.


Sign in / Sign up

Export Citation Format

Share Document