Mechanical properties and extended creep behavior of bamboo fiber reinforced recycled poly(lactic acid) composites using the time–temperature superposition principle

2015 ◽  
Vol 93 ◽  
pp. 558-563 ◽  
Author(s):  
Teng-Chun Yang ◽  
Tung-Lin Wu ◽  
Ke-Chang Hung ◽  
Yong-Long Chen ◽  
Jyh-Horng Wu
2017 ◽  
Vol 52 (6) ◽  
pp. 793-805 ◽  
Author(s):  
Tsuyoshi Matsuo ◽  
Masayuki Nakada ◽  
Kazuro Kageyama

This study verified that the time–temperature superposition principle for fiber-directional flexural strength can be applied to thermoplastic composites undergoing instantaneous fast phenomena such as impact failure and long-term phenomena such as creep failure, by constructing the time- and temperature-dependent master curve of relaxation modulus of thermoplastic resin. The master curve could be transformed to another master curve that predicts fiber-directional flexural strength of carbon fiber-reinforced thermoplastic composites based on the micro-buckling failure theory expressed mainly by the resin’s elastic modulus. The experimental results obtained from high-speed bending test, static bending test at various temperatures, and creep bending test demonstrated that kink band failure occurred on the compressive surface of the specimen at every test condition. This validation and verification related to thermoplastic composites made it possible to predict static and dynamic flexural strengths at arbitrary temperature and creep flexural strength.


2019 ◽  
Author(s):  
Ketan Khare ◽  
Frederick R. Phelan Jr.

<a></a><a>Quantitative comparison of atomistic simulations with experiment for glass-forming materials is made difficult by the vast mismatch between computationally and experimentally accessible timescales. Recently, we presented results for an epoxy network showing that the computation of specific volume vs. temperature as a function of cooling rate in conjunction with the time–temperature superposition principle (TTSP) enables direct quantitative comparison of simulation with experiment. Here, we follow-up and present results for the translational dynamics of the same material over a temperature range from the rubbery to the glassy state. Using TTSP, we obtain results for translational dynamics out to 10<sup>9</sup> s in TTSP reduced time – a macroscopic timescale. Further, we show that the mean squared displacement (MSD) trends of the network atoms can be collapsed onto a master curve at a reference temperature. The computational master curve is compared with the experimental master curve of the creep compliance for the same network using literature data. We find that the temporal features of the two data sets can be quantitatively compared providing an integrated view relating molecular level dynamics to the macroscopic thermophysical measurement. The time-shift factors needed for the superposition also show excellent agreement with experiment further establishing the veracity of the approach</a>.


Sign in / Sign up

Export Citation Format

Share Document