Evaluation of temperature and loading rate effect on fracture toughness of fiber reinforced asphalt mixture using edge notched disc bend (ENDB) specimen

2020 ◽  
Vol 234 ◽  
pp. 117365 ◽  
Author(s):  
Hamed Motamedi ◽  
Hassan Fazaeli ◽  
M.R.M. Aliha ◽  
Hamid Reza Amiri
2020 ◽  
Vol 240 ◽  
pp. 117681
Author(s):  
Mehran Aziminezhad ◽  
Sahand Mardi ◽  
Pouria Hajikarimi ◽  
Fereidoon Moghadas Nejad ◽  
Amir H. Gandomi

2000 ◽  
Author(s):  
Paul Moy ◽  
Jerome Tzeng

Abstract Fracture toughness properties of composite laminates were evaluated at a loading rate commonly observed in ordinance applications. The laminates are composed of IM7 graphite and a small volume fraction of S2 glass plies to form a cross-ply laminate. Fracture toughness appears to be very rate sensitive if the crack growth perpendicular to the plane dominated by glass/matrix property. Experimental data shows a 30–40% increase of fracture toughness for various layup as the loading rate was increase by 1000 times. The specimens examined under microscopic indicates the strengthening might due to different failure mechanism in the matrix. In addition, there is no visible rate effect if the crack propagation is perpendicular to the graphite dominant plane.


2005 ◽  
Vol 96 (3) ◽  
pp. 899-904 ◽  
Author(s):  
George C. Jacob ◽  
J. Michael Starbuck ◽  
John F. Fellers ◽  
Srdan Simunovic ◽  
Raymond G. Boeman

Author(s):  
Jin Weon Kim ◽  
Myung Rak Choi ◽  
Sang Bong Lee ◽  
Yun Jae Kim

This study investigated the loading rate effect on the fracture resistance under cyclic loading conditions to clearly understand the fracture behavior of piping materials under excessive seismic conditions. J-R fracture toughness tests were conducted under monotonic and cyclic loading conditions at various displacement rates at room temperature (RT) and the operating temperature of nuclear power plants (NPPs), i.e., 316°C. SA508 Gr. 1a lo w-alloy steel (LAS) and SA312 TP316 stainless steel (SS) piping materials were used for the tests. The fracture resistance under a reversible cyclic load was considerably lower than that under monotonic load regardless of test temperature, material, and loading rate. Under both cyclic and monotonic loading conditions, the fracture behavior of SA312 TP316 SS was independent of the loading rate at both RT and 316°C. For SA508 Gr. 1a LAS, the loading rate effect on the fracture behavior was appreciable at 316°C under both cyclic and monotonic loading conditions. However, the loading rate effect diminished when the cyclic load ratio (R) was −1. Thus, it was recognized that the fracture behavior of piping materials, including seismic loading characteristics, can be evaluated when tested under a cyclic load of R = −1 at a quasi-static loading rate.


2017 ◽  
Vol 108 ◽  
pp. 301-314 ◽  
Author(s):  
Christian Carloni ◽  
Salvatore Verre ◽  
Lesley H. Sneed ◽  
Luciano Ombres

Author(s):  
Tohru Tobita ◽  
Yutaka Nishiyama ◽  
Takuyo Ohtsu ◽  
Makoto Udagawa ◽  
Jinya Katsuyama ◽  
...  

To examine the applicability of Mini-CT (0.16T-CT) specimens to fracture toughness evaluation by Master Curve method, we conducted fracture toughness tests using specimens with different size and shapes such as pre-cracked Charpy-type, 0.4T-CT and 1T-CT in addition to 0.16T-CT specimens for commercially manufactured five kinds of SA533B Cl.1 steels with different ductile-to-brittle transition temperature. Reference temperature To determined by 0.16T-CT specimens were approximately equal to those of 1T-CT specimens for all materials. The Weibull slope of 0.16T-CT specimens was similar to those of other larger specimens. We also examined a loading rate effect on To of 0.16T-CT specimens within the quasi-static loading range prescribed by ASTM E1921. There was no loading rate effect peculiar to 0.16T-CT specimens, while the higher loading rate gave rise to slightly higher To.


2019 ◽  
Vol 131 ◽  
pp. 358-371 ◽  
Author(s):  
Xuedong Zhai ◽  
Jinling Gao ◽  
Yizhou Nie ◽  
Zherui Guo ◽  
Nesredin Kedir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document