Loading Rate Effect on Translaminar Fracture Toughness of Hybrid Composite Laminate

2000 ◽  
Author(s):  
Paul Moy ◽  
Jerome Tzeng

Abstract Fracture toughness properties of composite laminates were evaluated at a loading rate commonly observed in ordinance applications. The laminates are composed of IM7 graphite and a small volume fraction of S2 glass plies to form a cross-ply laminate. Fracture toughness appears to be very rate sensitive if the crack growth perpendicular to the plane dominated by glass/matrix property. Experimental data shows a 30–40% increase of fracture toughness for various layup as the loading rate was increase by 1000 times. The specimens examined under microscopic indicates the strengthening might due to different failure mechanism in the matrix. In addition, there is no visible rate effect if the crack propagation is perpendicular to the graphite dominant plane.

1986 ◽  
Vol 108 (4) ◽  
pp. 290-295 ◽  
Author(s):  
H. Saghizadeh ◽  
C. K. H. Dharan

The delamination fracture toughness of graphite and aramid-epoxy composite laminates was determined as a function of loading rate for unidirectional and woven reinforcements. In addition, the in-situ fracture toughness of the epoxy matrix was obtained by determining the crack energy release rate during the delamination fracture of thin epoxy films. The fracture surfaces were investigated using scanning electron microscopy. The results show that increasing the loading rate and the use of woven reinforcements increase the fracture toughness. A model was used to estimate the relative contributions from the fiber-matrix interface and the matrix to the overall delamination crack energy release rate.


2006 ◽  
Vol 129 (6) ◽  
pp. 697-704 ◽  
Author(s):  
A. G. Agwu Nnanna

This paper presents a systematic experimental method of studying the heat transfer behavior of buoyancy-driven nanofluids. The presence of nanoparticles in buoyancy-driven flows affects the thermophysical properties of the fluid and consequently alters the rate of heat transfer. The focus of this paper is to estimate the range of volume fractions that results in maximum thermal enhancement and the impact of volume fraction on Nusselt number. The test cell for the nanofluid is a two-dimensional rectangular enclosure with differentially heated vertical walls and adiabatic horizontal walls filled with 27 nm Al2O3–H2O nanofluid. Simulations were performed to measure the transient and steady-state thermal response of nanofluid to imposed isothermal condition. The volume fraction is varied between 0% and 8%. It is observed that the trend of the temporal and spatial evolution of temperature profile for the nanofluid mimics that of the carrier fluid. Hence, the behaviors of both fluids are similar. Results shows that for small volume fraction, 0.2⩽ϕ⩽2% the presence of the nanoparticles does not impede the free convective heat transfer, rather it augments the rate of heat transfer. However, for large volume fraction ϕ>2%, the convective heat transfer coefficient declines due to reduction in the Rayleigh number caused by increase in kinematic viscosity. Also, an empirical correlation for Nuϕ as a function of ϕ and Ra has been developed, and it is observed that the nanoparticle enhances heat transfer rate even at a small volume fraction.


2014 ◽  
Vol 68 (4) ◽  
pp. 413-427 ◽  
Author(s):  
Mirjana Filipovic

The as-cast microstructure of Fe-Cr-C-V white irons consists of M7C3 and vanadium rich M6C5 carbides in austenitic matrix. Vanadium changed the microstructure parameters of phase present in the structure of these alloys, including volume fraction, size and morphology. The degree of martensitic transformation also depended on the content of vanadium in the alloy. The volume fraction of the carbide phase, carbide size and distribution has an important influence on the wear resistance of Fe-Cr-C-V white irons under low-stress abrasion conditions. However, the dynamic fracture toughness of Fe-Cr-C-V irons is determined mainly by the properties of the matrix. The austenite is more effective in this respect than martensite. Since the austenite in these alloys contained very fine M23C6 carbide particles, higher fracture toughness was attributed to a strengthening of the austenite during fracture. Besides, the secondary carbides which precipitate in the matrix regions also influence the abrasion behaviour. By increasing the matrix strength through a dispersion hardening effect, the fine secondary carbides can increase the mechanical support of the carbides. Deformation and appropriate strain hardening occur in the retained austenite of Fe-Cr-C-V alloys under repeated impact loading. The particles of precipitated M23C6 secondary carbides disturb dislocations movement and contribute to increase the effects of strain hardening in Fe-Cr-C-V white irons.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1324
Author(s):  
Zhe Ren ◽  
Frank Ernst

To understand the effect of surface machining on the resistance of AISI 316L to SCC (stress–corrosion cracking) in marine environments, we tested nuts surface-machined by different methods in a seawater-spraying chamber. Two forms of cracks were observed: on the machined surface and underneath it. On the surface, cracks connected with the pitting sites were observed to propagate perpendicular to the hoop-stress direction, identifying them as stress–corrosion cracks. Under the surface, catastrophic transgranular cracks developed, likely driven by hydrogen embrittlement caused by the chloride-concentrating level of humidity in the testing environment. Under constant testing conditions, significantly different SCC resistance was observed depending on how the nuts had been machined. Statistical evaluation of the nut surface-crack density indicates that machining by a “form” tool yields a crack density one order of magnitude lower than machining by a “single-point” tool. Microstructural analysis of form-tool-machined nuts revealed a homogeneous deformed subsurface zone with nanosized grains, leading to enhanced surface hardness. Apparently, the reduced grain size and/or the associated mechanical hardening improve resistance to SCC. The nanograin subsurface zone was not observed on nuts machined by a single-point tool. Surface roughness measurements indicate that single-point-tool-machined nuts have a rougher surface than form-tool machined nuts. Apparently, surface roughness reduces SCC resistance by increasing the susceptibility to etch attack in Cl--rich solutions. The results of X-ray diffractometry and transmission electron microscopy diffractometry indicate that machining with either tool generates a small volume fraction (< 0.01) of strain-induced martensite. However, considering the small volume fraction and absence of martensite in regions of cracking, martensite is not primarily responsible for SCC in marine environments.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 490
Author(s):  
Jérémy Chaulet ◽  
Abdellah Kharicha ◽  
Sylvain Charmond ◽  
Bernard Dussoubs ◽  
Stéphane Hans ◽  
...  

Electroslag remelting is a process extensively used to produce metallic ingots with high quality standards. During the remelting operation, liquid metal droplets fall from the electrode through the liquid slag before entering the liquid pool of the secondary ingot. To better understand the process and help to optimize the operating condition choice, a 2D axisymmetric multiphase model of the slag domain has been developed using a two fluid Eulerian approach. During their fall, droplets hydrodynamic interactions are calculated thanks to an appropriate drag law. Influence of droplets on the electromagnetic field and on the slag hydrodynamics is discussed, as well as their heat exchange with the slag. Even with a small volume fraction, the droplets influence is noticeable. The present investigation shows that small droplets have a large influence on the slag hydrodynamics, due to a great momentum exchange. However heat transfer is more influenced by large drops, which are found to be relatively far from the thermal equilibrium with the slag phase.


1997 ◽  
Vol 335 ◽  
pp. 189-212 ◽  
Author(s):  
HONGWEI CHENG ◽  
GEORGE PAPANICOLAOU

We calculate the force on a periodic array of spheres in a viscous flow at small Reynolds number and for small volume fraction. This generalizes the known results for the force on a periodic array due to Stokes flow (zero Reynolds number) and the Oseen correction to the Stokes formula for the force on a single sphere (zero volume fraction). We use a generalization of Hasimoto's approach that is based on an analysis of periodic Green's functions. We compare our results to the phenomenological ones of Kaneda for viscous flow past a random array of spheres.


Author(s):  
I. Eames ◽  
J. B. Flor

Interfaces, across which fluid and flow properties change significantly, are a ubiquitous feature of most turbulent flows and are present within jets, plumes, homogeneous turbulence, oceans and planetary atmospheres. Even when the interfaces occupy a small volume fraction of the entire flow, they largely control processes such as entrainment and dissipation and can act as barriers to transport. This Theme Issue brings together some of the leading recent developments on interfaces in turbulence, drawing in many methodologies, such as experiments, direct number simulations, inverse methods and analytical modelling.


2016 ◽  
Vol 26 (07) ◽  
pp. 1319-1355 ◽  
Author(s):  
Sergio Conti ◽  
Barbara Zwicknagl

We study microstructure formation in two nonconvex singularly-perturbed variational problems from materials science, one modeling austenite–martensite interfaces in shape-memory alloys, the other one slip structures in the plastic deformation of crystals. For both functionals we determine the scaling of the optimal energy in terms of the parameters of the problem, leading to a characterization of the mesoscopic phase diagram. Our results identify the presence of a new phase, which is intermediate between the classical laminar microstructures and branching patterns. The new phase, characterized by partial branching, appears for both problems in the limit of small volume fraction, that is, if one of the variants (or of the slip systems) dominates the picture and the volume fraction of the other one is small.


1987 ◽  
Vol 109 (1) ◽  
pp. 74-86 ◽  
Author(s):  
C. K. Sung ◽  
B. S. Thompson

An essential ingredient of the next generation of robotic manipulators will be high-strength lightweight arms which promise high-performance characteristics. Currently, a design methodology for optimally synthesizing these essential robotic components does not exist. Herein, an approach is developed for addressing this void in the technology-base by integrating state-of-the-art techniques in both the science of composite materials and also the science of flexible robotic systems. This approach is based on the proposition that optimal performance can be achieved by fabricating robot arms with optimal cross-sectional geometries fabricated with optimally tailored composite laminates. A methodology is developed herein which synthesizes the manufacturing specification for laminates which are specifically tailored for robotic applications in which both high-strength, high-stiffness robot arms are required which also possess high material damping. The parameters in the manufacturing specification include the fiber-volume fraction, the matrix properties, the fiber properties, the ply layups, the stacking sequence and the ply thicknesses. This capability is then integrated within a finite-element methodology for analyzing the dynamic response of flexible robots. An illustrative example demonstrates the approach by simulating the three-dimensional elastodynamic response of a robot subjected to a prescribed spatial maneuver.


Sign in / Sign up

Export Citation Format

Share Document