Mechanical response of hydronic asphalt pavement under temperature–vehicle coupled load: A finite element simulation and accelerated pavement testing study

2021 ◽  
Vol 272 ◽  
pp. 121884
Author(s):  
Xingyi Zhu ◽  
Qifan Zhang ◽  
Long Chen ◽  
Zhao Du
2020 ◽  
Vol 20 (3) ◽  
pp. 04020006
Author(s):  
Ogoubi Cyriaque Assogba ◽  
Zhiqi Sun ◽  
Yiqiu Tan ◽  
Lushinga Nonde ◽  
Zheng Bin

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Zhiguang Guan ◽  
Chuanyi Zhuang ◽  
Peng Zhang

The objective of this study is to evaluate the influence of moving loads on the asphalt pavement in response to single-axle and dual-axle loading modes using the full-scale accelerated pavement testing (APT) facility from Shandong Jiaotong University. First, a test lane of pavement with four structures is constructed. Eleven strain sensors and four pressure cells are embedded at different depths and positions. Secondly, a research on the strain and stress in single-axle and dual-axle loading modes is conducted. Finally, the time accumulation of strain and stress is defined to describe the degree of pavement damage. The study reaches the following conclusions: (1) the strain reversal is induced as the wheels pass through the pavement, and the stress is always a positive value. (2) Both the strain and the stress increase as the loading increases regardless of the loading modes. (3) Comparing the two loading modes at the same velocity and loading, the horizontal tensile strain peak, the horizontal compressive strain peak, and the stress peak are all greater in the single-axle loading mode. But the degree of pavement damage is greater in the dual-axle loading mode based on the points of the time accumulations of strain and stress of each pass.


2011 ◽  
Vol 255-260 ◽  
pp. 3426-3431 ◽  
Author(s):  
Jin Ting Wu ◽  
Fen Ye ◽  
Yin Ting Wu

The internal mechanical response of asphalt pavement structure is difficult to be obtained because of the limitations of theoretical calculation and present testing methods. In order to get practical information of instructure layers, this paper analyzed the cumulative and instantaneous strains of layers’ bottom of semi-rigid base asphalt pavement based on Accelerated Pavement Testing and Fiber Bragg Grating sensors, as well as got the spatial distribution and time-variation law of longitudinal, lateral and vertical strain responses under controlled loading condition. The research result shows that under the moving vehicle loads, there is an obvious alternative property of tension-compression as the strain response of the pavement structure, and different variation shapes of instantaneous stain are in different layers from top to down. Also the measured instantaneous three-direction strain of the bottom of each surface are higher than the calculated values with BISAR, while they anatomizes well in base. This paper can be regarded as useful and tentative research and application on future correlative study.


Sign in / Sign up

Export Citation Format

Share Document