interface roughness
Recently Published Documents


TOTAL DOCUMENTS

1009
(FIVE YEARS 89)

H-INDEX

47
(FIVE YEARS 4)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 152
Author(s):  
Peng Peng ◽  
Shaosong Jiang ◽  
Zhonghuan Qin ◽  
Zhen Lu

This work fabricated a double hollow structural component of Mg-8.3Gd-2.9Y-0.8Zn-0.2Zr alloy by superplastic forming (SPF) and reaction-diffusion bonding (RDB). The superplastic characteristic and mechanical properties of Mg-8.3Gd-2.9Y-0.8Zn-0.2Zr alloy sheets at 250–450 °C were studied. Tensile tests showed that the maximum elongation of tensile specimens was about 1276.3% at 400 °C under a strain rate of 1 × 10−3 s−1. Besides, the effect of bonding temperature and interface roughness on microstructure and mechanical properties of the reaction diffusion-bonded joints with a Cu interlayer was investigated. With the increase of temperature, the diffusion coefficient of Cu increases, and the diffusion transition region becomes wider, leading to tightening bonding of the joint. However, the bonding quality of the joint will deteriorate due to grain size growth at higher temperatures. Shear tests showed that the highest strength of the joints was 152 MPa (joint efficiency = 98.7%), which was performed at 460 °C.


2022 ◽  
Vol 9 ◽  
Author(s):  
Yanbo Zhu ◽  
Shuaisheng Miao ◽  
Hongfei Li ◽  
Yutao Han ◽  
Hengxing Lan

Quaternary loess is widely distributed over the tertiary Hipparion red clay on the Loess Plateau of China. Large-scale loess landslides often occur along the weak contact interface between these two sediment materials. To investigate the failure mode and shear strength characteristics of the loess–Hipparion red clay contact interface, a series of shearing experiments were performed on interface specimens using purpose-built shear equipment. In this article, the relationship between shear strength and interface morphology is discussed, and an empirical shear model of the interface is proposed based on the experimental results and theoretical work. The results indicate that discontinuities between the loess and the Hipparion red clay reduce the shear strength of specimens significantly. The contribution of the contact interface to shear performance including failure mode, shear deformation, and shear strength varies with the interface morphology and the applied normal stress. With low interface roughness or normal stress, sliding failure is likely to occur. With increasing interface roughness and normal stress, the peak strength increases rapidly. With further increase in the interface roughness and normal stress, the increment of peak strength decreases gradually as the failure mode transitions from sliding mode to cutoff mode. A staged shear model that takes the failure mode into consideration is developed to express the non-linear change in the interface shear strength. The shear model’s capability is validated by comparing model estimates with experimental data. This work improves our understanding of shear mechanisms and the importance of considering the effects of interfacial properties in the mechanical behavior of contact interfaces.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Zhenwei Cai ◽  
Zifan Zhang ◽  
Yingzheng Liu ◽  
Xiaofeng Zhao ◽  
Weizhe Wang

AbstractThe penetration of CaO–MgO–Al2O3–SiO2 (CMAS) is one of the most significant factors that induce the failure of air-plasma-sprayed thermal barrier coatings (APS TBCs). The direct penetration of CMAS changes the thermal/mechanical properties of the top coat (TC) layer, which affects the thermal mismatch stress behavior and the growth of thermally grown oxide (TGO) at the TC/bond coat (BC) interface, thereby resulting in a more complicated interface stress state. In the present study, a two-dimensional global model of APS TBCs with half of the TC layer penetrated by CMAS is established to investigate the effect of non-uniform CMAS penetration on the interface stress behavior. Subsequently, a local model extracted from the global model is established to investigate the effects of interface morphologies and CMAS penetration depth. The results show that non-uniform CMAS penetration causes non-uniform TGO growth in APS TBCs, which consequently causes the stress behavior to vary along the interface. Furthermore, the CMAS penetration depth imposes a significant effect on the TC/TGO interface stress behavior, whereas the interface roughness exerts a prominent effect on the stress level at the BC/TGO interface under CMAS penetration. This study reveals the mechanism associated with the effect of non-uniform CMAS penetration on the interface stress behavior in APS TBCSs.


2021 ◽  
Vol 41 (1) ◽  
pp. 62-77
Author(s):  
Sayantan Biswas ◽  
- Sarifuddin ◽  
Prashanta Kumar Mandal

Of concern in the paper is a numerical study of endovascular drug delivery in a patient-specific atherosclerotic artery through a mathematical model in which the luminal flow is governed by an incompressible vis- cous Newtonian fluid, and the transport of luminal as well as tissue concentration is modeled as an unsteady convection-diffusion process. An image processing technique has been successfully adopted to detect the edges of the computational domain extracted from an asymmetric (about the centerline of the artery) patient-specific atherosclerotic artery. Considering each pixel as a control volume, the Marker and Cell (MAC) method has been leveraged to get a quantitative insight of the model considered by exploiting physiologically realistic initial, boundary as well as interface conditions. Simulated results reveal that the number as well as the length of separation zone does increase with increasing Re, and the near-wall velocity contour might be important for estimating the near-wall residence time for the pool of drug molecules available for tissue uptake. Results also show that the more the tissue porosity and interface roughness do not necessarily imply the more the effective- ness of delivery, even though they enhance the averaged concentration in the tissue domains, and also the area under concentration diminishes with increasing Peclet number. Thus, the tissue porosity, the Peclet number and various geometrical shapes (interface roughness) play a pivotal role in the dispersion and the effectiveness of drug delivery. GANITJ. Bangladesh Math. Soc.41.1 (2021) 62-77


2021 ◽  
Author(s):  
Houfu Song ◽  
Fang Liu ◽  
Song Hu ◽  
Qinshu Li ◽  
Susu Yang ◽  
...  

Abstract Understanding thermal transport across metal/semiconductor interfaces is crucial for heat dissipation of electronics The dominant heat carriers in non-metals, phonons, transport elastically across most interfaces, except for a few extreme cases where the two materials that formed the interface are highly dissimilar with a large difference in Debye temperature. In this work we show that even for two materials with similar Debye temperatures (Al/Si, Al/GaN), a substantial portion of phonons will transport inelastically across their interfaces at high temperatures, significantly enhancing interface thermal conductance. Moreover, we find that interface roughness strongly affects phonon transport process. For atomically sharp interfaces, phonons are allowed to transport inelastically and interface thermal conductance linearly increases at high temperatures. With increasing interface roughness, inelastic phonon transport rapidly diminishes. Our results provide new insights on phonon transport across interfaces and open up opportunities to engineering interface thermal conductance specifically for materials of relevance to microelectronics.


2021 ◽  
Author(s):  
Zack Westgate ◽  
Ricardo Argiolas ◽  
Regis Wallerand ◽  
Jean-Christophe Ballard

Abstract This paper is a companion paper to OTC 28671, titled "Experience with Interface Shear Box Testing for Axial Pipe-Soil Interaction Assessment on Soft Clay", and presents a similar range of experience and best practice recommendations for geotechnical laboratory testing to determine soil properties relevant to pipeline-seabed friction on sandy seabeds. The paper is underpinned by a new database that demonstrates the driving parameters that influence interface friction in granular materials. By accurately quantifying shear resistance along the pipe-soil interface under low normal stresses imposed by subsea pipelines, design ranges in friction can be narrowed and/or tailored to specific pipeline conditions. These improved geotechnical inputs to pipe-soil interaction can alleviate unnecessary axial expansion mitigation and lateral stabilization measures, unlocking cost savings otherwise unavailable through conventional testing. A large database is presented, compiled from both previously published research and unpublished recent industry experience with low normal stress interface shear testing using various modified direct shear box devices. The test database comprises several coarse-grained soil types of both silica and carbonate minerology tested against pipeline coatings of various material, hardness and roughness. The database populates a framework for assessing frictional pipe-soil interaction response, illuminating key trends from normal stress, interface roughness and hardness, and particle angularity, which otherwise remain elusive when examined through individual test datasets. This database and the populated framework provides guidance to pipeline and geotechnical engineers in the form of a basis for initial estimates of axial and lateral friction of pipelines on sand and an approach for improving these estimates via focused site-specific testing. The test database includes previously unreleased project data collected over the past few years for offshore oil and gas projects. Similar to its predecessor paper on soft clays (OTC 28671), this paper shares the authors’ collective experience providing guidance on the planning, execution and interpretation of low stress interface shear tests in sands. The combined databases across both papers provide a significant improvement in early stage guidance for characterization of geotechnical soil properties for subsea pipeline design.


Sign in / Sign up

Export Citation Format

Share Document