Characteristics and analysis of dynamic strain response on typical asphalt pavement using Fiber Bragg Grating sensing technology

2021 ◽  
Vol 310 ◽  
pp. 125242
Author(s):  
Hongfu Liu ◽  
Wenwen Ge ◽  
Qinxue Pan ◽  
Rong Hu ◽  
Songtao Lv ◽  
...  
2021 ◽  
Author(s):  
Rafael Mancuso Paraiso Cavalcanti ◽  
Jaqueline Bierende ◽  
Beatriz Brusamarello ◽  
Jean Carlos Cardozo Da Silva ◽  
Giovanni Alfredo Guarneri ◽  
...  

2018 ◽  
Vol 1065 ◽  
pp. 252002 ◽  
Author(s):  
Ligang Wang ◽  
Lewen Yu ◽  
Yuansheng Zhang ◽  
Da Zhang ◽  
Zhigang Tao ◽  
...  

2021 ◽  
Vol 17 (12) ◽  
pp. 723-728
Author(s):  
Wei Wang ◽  
Chuanyi Tao ◽  
Hao Wang ◽  
Xuhai Jiang ◽  
Rong Chen ◽  
...  

2020 ◽  
pp. 073168442095811
Author(s):  
Yannick Blößl ◽  
Gergely Hegedüs ◽  
Gábor Szebényi ◽  
Tamás Tábi ◽  
Ralf Schledjewski ◽  
...  

This article examines the use of fiber Bragg grating sensors for cure monitoring purposes in resin transfer molding processes. Within a resin transfer molding test series a thermoset epoxy-amine resin system was used in combination with a woven flax fiber reinforcement. Particular attention was paid on the location of the optical fiber sensor and its sensitive Bragg grating element inside the mold cavity. Three different installation approaches were tested and the correlation of the corresponding strain response with the actual cure state of the resin system was investigated at 50°C and 70°C isothermal cure temperature, respectively. We could demonstrate that characteristic, conspicuous strain changes are directly related to the sol–gel conversion of the thermoset polymer, which was analyzed considering different approaches for the gel-point detection based on rheological measurements. With the installation of the sensor inside a controllable, capsuled resin volume, we could achieve the most reliable strain response that provides capabilities to give in-situ information of the cure state beyond the gelation point.


Sign in / Sign up

Export Citation Format

Share Document