polarization sensitivity
Recently Published Documents


TOTAL DOCUMENTS

357
(FIVE YEARS 65)

H-INDEX

31
(FIVE YEARS 5)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 490
Author(s):  
Jiazhen Zhang ◽  
Luhan Yang ◽  
Huang Xu ◽  
Jie Zhou ◽  
Yuxiang Sang ◽  
...  

It is challenging to obtain wafer-scaled aligned films for completely exploiting the promising properties of semiconducting single-walled carbon nanotubes (s-SWCNTs). Aligned s-SWCNTs with a large area can be obtained by combining water evaporation and slow withdrawal-induced self-assembly in a dip-coating process. Moreover, the tunability of deposition morphology parameters such as stripe width and spacing is examined. The polarized Raman results show that s-SWCNTs can be aligned in ±8.6°. The derived two terminal photodetector shows both a high negative responsivity of 41 A/W at 520 nm and high polarization sensitivity. Our results indicate that aligned films with a large area may be useful to electronics- and optoelectronics-related applications.


2021 ◽  
Author(s):  
Jing Pan ◽  
Xiujuan Zhang ◽  
Yiming Wu ◽  
Jinhui Chen ◽  
Jinwen Wang ◽  
...  

Abstract Being able to probe the polarization states of light is crucial for applications from medical diagnostics and bio-inspired navigation to information encryption and quantum computing. Current state-of-the-art polarimeters based on anisotropic semiconductors enable direct linear dichroism photodetection without the need for bulky and complex external optics. However, their polarization sensitivity is restricted by the inherent optical anisotropy, leading to low dichroic ratios of typically smaller than ten. Here, we unveil an effective and general design rule to achieve a more than 2,000-fold enhanced polarization sensitivity by exploiting a light-induced anisotropic gating effect in organic phototransistors. The polarization-dependent trapping of photogenerated charge carriers provides an anisotropic photo-induced gate for current amplification, which has resulted in an extremely high dichroic ratio of over 1.2×104, more than two orders of magnitude higher than any previous reports. These findings further enable the first demonstration of a novel miniaturized bionic celestial compass for skylight-based polarization navigation. Our results offer a fundamental design principle and a new route for the development of next-generation highly polarization-sensitive optoelectronics.


Author(s):  
C. Morse ◽  
H.L. Crawford ◽  
A.O. Macchiavelli ◽  
A. Wiens ◽  
M. Albers ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7721
Author(s):  
Irfan Mujahidin ◽  
Akio Kitagawa

The main challenge faced by RF energy harvesting systems is to supply relatively small electrical power to wireless sensor devices using microwaves. The solution is to implement a new device in a circularly polarized rectenna with circular polarization sensitivity integrated with a thin-film solar cell. Its dual-feed antennas are connected to a 2 × 4 asymmetric hybrid coupler and a multi-stage voltage doubler rectifier circuit. This configuration has a 2 × 4 asymmetric hybrid coupler used to produce 4 outputs with a 90-degree waveform phase difference. The two ports can independently be connected to the wireless sensor circuit: radiofrequency harvesting of hybrid energy solar and information equipment can be carried out with these two antennas. The Dual-Feed circular patch antenna has a two-port bandwidth of 137 MHz below −15 dB and an axial ratio of less than 3 dB, with a center frequency of 2.4 GHz with directional radiation and a high gain of 8.23 dB. It can be sensitive to arbitrary polarization of the input voltage multiplier waveform to overcome uncertainty in empirical communication environments. A parallel structure is arranged with a thin film solar cell integration from the transmitter with an output voltage of 1.3297 V with a compact composition and RF energy. The importance of adopting a wireless sensor strategy with circular polarization sensitivity and integrated RF solar energy harvesting rather than a single source method makes this research a significant novelty by optimizing the analysis of multiple wireless sensor signal access.


2021 ◽  
Author(s):  
Mauro Pulin ◽  
Kilian E. Stockhausen ◽  
Olivia Andrea Masseck ◽  
Martin Kubitschke ◽  
Bjoern Busse ◽  
...  

Fluorescent proteins such as GFP are best excited by light that is polarized parallel to the dipole axis of the fluorophore. In most cases, fluorescent proteins are randomly oriented, resulting in unbiased images even when polarized light is used for excitation, e.g. in two-photon microcopy. Here we reveal a surprisingly strong polarization sensitivity in a class of GPCR-based neurotransmitter sensors where the fluorophore is anchored on both ends. In tubular structures such as dendrites, this effect led to a complete loss of membrane signal in dendrites running parallel to the polarization direction of the excitation beam. Our data reveal a major problem for two-photon measurements of neurotransmitter concentration that has not been recognized by the neuroscience community. To remedy the sensitivity to dendritic orientation, we designed an optical device that generates interleaved pulse trains of orthogonal polarization, removing the orientation bias from images. The passive device, which we inserted in the beam path of an existing two-photon microscope, also removed the strong direction bias in second harmonic generation (SHG) images. We conclude that for optical measurements of transmitter concentration with GPCR-based sensors, orthogonally polarized excitation is essential.


2021 ◽  
Author(s):  
Benjamin Bauer ◽  
Rahul Sharma ◽  
Majed Chergui ◽  
Malte Oppermann

The photochemistry of DNA systems is characterized by the ultraviolet (UV) absorption of π-stacked nucleobases, resulting in exciton states delocalized over several bases. As their relaxation sensitively depends on local stacking conformations, disentangling the ensuing electronic and structural dynamics has remained an experimental challenge, despite their fundamental role in protecting the genome from potentially harmful UV radiation. Here we use transient absorption and transient absorption anisotropy spectroscopy with broadband femtosecond deep-UV pulses (250-360 nm) to resolve the exciton dynamics of UV-excited adenosine single strands under physiological conditions. Due to the exceptional deep-UV bandwidth and polarization sensitivity of our experimental approach, we simultaneously resolve the population dynamics, charge-transfer (CT) character and conformational changes encoded in the UV transition dipoles of the π-stacked nucleotides. Whilst UV excitation forms fully charge-separated CT excitons in less than 0.3 ps, we find that most decay back to the ground state via a solvent-assisted back-electron transfer. This deactivation mechanism is accompanied by a structural relaxation of the photoexcited base-stack, which we identify as an inter-base rotation of the nucleotides. Our results finally complete the exciton relaxation mechanism for adenosine single strands and offer a direct view into the coupling of electronic and structural dynamics in aggregated photochemical systems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenhao Ran ◽  
Zhihui Ren ◽  
Pan Wang ◽  
Yongxu Yan ◽  
Kai Zhao ◽  
...  

AbstractPolarized light can provide significant information about objects, and can be used as information carrier in communication systems through artificial modulation. However, traditional polarized light detection systems integrate polarizers and various functional circuits in addition to detectors, and are supplemented by complex encoding and decoding algorithms. Although the in-plane anisotropy of low-dimensional materials can be utilized to manufacture polarization-sensitive photodetectors without polarizers, the low anisotropic photocurrent ratio makes it impossible to realize digital output of polarized information. In this study, we propose an integrated polarization-sensitive amplification system by introducing a nanowire polarized photodetector and organic semiconductor transistors, which can boost the polarization sensitivity from 1.24 to 375. Especially, integrated systems are universal in that the systems can increase the anisotropic photocurrent ratio of any low-dimensional material corresponding to the polarized light. Consequently, a simple digital polarized light communication system can be realized based on this integrated system, which achieves certain information disguising and confidentiality effects.


2021 ◽  
Vol 18 (184) ◽  
Author(s):  
P. C. Brady ◽  
M. E. Cummings ◽  
V. Gruev ◽  
T. Hernandez ◽  
S. Blair ◽  
...  

Reef squids belong to a group reputed for polarization sensitivity, yet polarization patterns of reef squid have not been quantified in situ . To quantify polarization patterns from video polarimetric data, we developed a protocol to map two-dimensional polarization data onto squid-shaped three-dimensional tessellated surfaces. This protocol provided a robust data container used to investigate three-dimensional regions-of-interest, producing data lineouts derived from the squid's geometry. This protocol also extracted polarimeter and squid body orientations and the solar heading from polarization images. When averaged over the solar heading, the ventral midline gave a low degree of polarization (2.4 ± 5.3%), and the area between the ventral and flank midlines had higher values (9.0 ± 5.3%). These averaged data had a large discontinuity in the angle of polarization (AoP) at the mantle's ventral midline (64 ± 55°), with larger discontinuities measured on individual squid. Ray-tracing calculations demonstrated that the AoP pattern was not related to the squid's surface-normal geometry. However, the AoP followed virtual striation axes on the squid's surface oriented 24° to the squid's long axis, similar in angle (27°) to the striations of birefringent collagen fibres documented in other squid species’ skin.


2021 ◽  
Vol 288 (1961) ◽  
Author(s):  
Gregor Belušič ◽  
Marko Ilić ◽  
Andrej Meglič ◽  
Primož Pirih

In many butterflies, the ancestral trichromatic insect colour vision, based on UV-, blue- and green-sensitive photoreceptors, is extended with red-sensitive cells. Physiological evidence for red receptors has been missing in nymphalid butterflies, although some species can discriminate red hues well. In eight species from genera Archaeoprepona, Argynnis, Charaxes, Danaus, Melitaea, Morpho, Heliconius and Speyeria , we found a novel class of green-sensitive photoreceptors that have hyperpolarizing responses to stimulation with red light. These green-positive, red-negative (G+R–) cells are allocated to positions R1/2, normally occupied by UV and blue-sensitive cells. Spectral sensitivity, polarization sensitivity and temporal dynamics suggest that the red opponent units (R–) are the basal photoreceptors R9, interacting with R1/2 in the same ommatidia via direct inhibitory synapses. We found the G+R– cells exclusively in butterflies with red-shining ommatidia, which contain longitudinal screening pigments. The implementation of the red colour channel with R9 is different from pierid and papilionid butterflies, where cells R5–8 are the red receptors. The nymphalid red-green opponent channel and the potential for tetrachromacy seem to have been switched on several times during evolution, balancing between the cost of neural processing and the value of extended colour information.


Sign in / Sign up

Export Citation Format

Share Document