Effect of mode mixity, temperature, binder content, and gradation on mixed mode (I/II) R-curve of asphalt concrete at low temperatures

2021 ◽  
Vol 313 ◽  
pp. 125567
Author(s):  
Sepehr Ghafari ◽  
Fereidoon Moghadas Nejad
Author(s):  
Elsiddig Elmukashfi ◽  
Alan C. F. Cocks

AbstractIn this paper, we propose a theoretical framework for studying mixed mode (I and II) creep crack growth under steady state creep conditions. In particular, we focus on the problem of creep crack growth along an interface, whose fracture properties are weaker than the bulk material, located either side of the interface. The theoretical framework of creep crack growth under mode I, previously proposed by the authors, is extended. The bulk behaviour is described by a power-law creep, and damage zone models that account for mode mixity are proposed to model the fracture process ahead of a crack tip. The damage model is described by a traction-separation rate law that is defined in terms of effective traction and separation rate which couple the different fracture modes. Different models are introduced, namely, a simple critical displacement model, empirical Kachanov type damage models and a micromechanical based model. Using the path independence of the $$C^{*}$$ C ∗ -integral and dimensional analysis, analytical models are developed for mixed mode steady-state crack growth in a double cantilever beam specimen (DCB) subjected to combined bending moments and tangential forces. A computational framework is then implemented using the Finite Element method. The analytical models are calibrated against detailed Finite Element models and a scaling function ($$C_{k}$$ C k ) is determined in terms of a dimensionless quantity $$\phi _{0}$$ ϕ 0 (which is the ratio of geometric and material length scales), mode mixity $$\chi $$ χ and the deformation and damage coupling parameters. We demonstrate that the form of the $$C_{k}$$ C k -function does not change with mode mixity; however, its value depends on the mode mixity, the deformation and damage coupling parameters and the detailed form of the damage zone. Finally, we demonstrate how parameters within the models can be obtained from creep deformation, creep rupture and crack growth experiments for mode I and II loading conditions.


2021 ◽  
Author(s):  
Elsiddig Elmukashfi ◽  
Alan Cocks

Abstract In this paper, we propose a theoretical framework for studying mixed mode (I and II) creep crack growth under steady state creep conditions. In particular, we focus on the problem of creep crack growth along an interface, whose fracture properties are weaker than the bulk material, located either side of the interface. The theoretical framework of creep crack growth under mode I, previously proposed by the authors, is extended. The bulk behaviour is described by power-law creep, and damage zone models that account for mode mixity are proposed to model the fracture process ahead of a crack tip. The damage model is described by a traction-separation rate law that is defined in terms of an effective traction and separation which couple the different fracture modes. Different models are introduced, namely, a simple critical displacement model, empirical Kachanov type damage models and a micromechanical based model. Using the path independence of the C * -integral and dimensional analysis, analytical models are developed for mixed mode steady-state crack growth in a double cantilever beam specimen (DCB) subjected to combined bending moments and tangential forces. A computational framework is then implemented using the Finite Element method. The analytical models are calibrated against detailed Finite Element models and a scaling function (C k ) is determined in terms of a dimensionless quantity Φ 0 (which is the ratio of geometric and material length scales), mode mixity χ and the deformation and damage coupling parameters. We demonstrate that the form of the C k -function does not change with mode mixity; however, its value depends on the mode mixity, the deformation and damage coupling parameters and the detailed form of the damage zone. Finally, we demonstrate how parameters within the models can be obtained from creep deformation, creep rupture and crack growth experiments for mode I and II loading conditions.


Holzforschung ◽  
2010 ◽  
Vol 64 (3) ◽  
Author(s):  
Hitendra K. Singh ◽  
Abhijit Chakraborty ◽  
Charles E. Frazier ◽  
David A. Dillard

Abstract An experimental evaluation of mixed mode fracture tests conducted on adhesively bonded wood specimens using a dual actuator load frame is presented. This unit allows the fracture mode mixity to be easily varied during testing of a given specimen, providing improved consistency, accuracy, and ease of testing over a range of loading modes. Double cantilever beam (DCB) type specimens made of southern yellow pine (Pinus spp.) wood substrates bonded with a commercially available one part polyurethane adhesive were tested over a wide range of mode mixities from pure mode I to pure mode II. The critical strain energy release rate (SERR) values were calculated from the measured load, displacement, and crack length data, in combination with material properties and specimen geometric parameters, and compared on a versus fracture envelope plot. Mean quasi-static fracture energy values were calculated to be 390 J m-2 and 420 J m-2 for mode I and mode II fracture, respectively. For various mixed mode phase angles, the critical SERR values were partitioned into mode I and mode II components. In mixed mode loading conditions the cracks were typically driven along the interface, which resulted in lower total fracture energy values when compared with those measured under pure mode I loading conditions. A drop in measured fracture energy of approximately 45% was observed with mode mixity phase angles as small as 16°, implying that engineering designs based on results from the popular mode I DCB test could be nonconservative in some situations. Fracture surfaces obtained at different mode mixities are also discussed. An improved understanding of fracture behavior of adhesively bonded wood joints under mixed mode loading through generation of fracture envelopes could lead to improved designs of bonded wood structures.


2010 ◽  
Vol 3 (2) ◽  
pp. 131-139
Author(s):  
Arash Karpour ◽  
Khosrow Zarrabi
Keyword(s):  

2021 ◽  
Vol 246 ◽  
pp. 107611
Author(s):  
Jianfeng Yang ◽  
Haojie Lian ◽  
Vinh Phu Nguyen

Sign in / Sign up

Export Citation Format

Share Document