scholarly journals Load-frequency control in a multi-source power system connected to wind farms through multi terminal HVDC systems

2018 ◽  
Vol 96 ◽  
pp. 305-315 ◽  
Author(s):  
Mehdi Tavakoli ◽  
Edris Pouresmaeil ◽  
Jafar Adabi ◽  
Radu Godina ◽  
João P.S. Catalão
Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1581
Author(s):  
Deepak Kumar Gupta ◽  
Amitkumar V. Jha ◽  
Bhargav Appasani ◽  
Avireni Srinivasulu ◽  
Nicu Bizon ◽  
...  

The automatic load frequency control for multi-area power systems has been a challenging task for power system engineers. The complexity of this task further increases with the incorporation of multiple sources of power generation. For multi-source power system, this paper presents a new heuristic-based hybrid optimization technique to achieve the objective of automatic load frequency control. In particular, the proposed optimization technique regulates the frequency deviation and the tie-line power in multi-source power system. The proposed optimization technique uses the main features of three different optimization techniques, namely, the Firefly Algorithm (FA), the Particle Swarm Optimization (PSO), and the Gravitational Search Algorithm (GSA). The proposed algorithm was used to tune the parameters of a Proportional Integral Derivative (PID) controller to achieve the automatic load frequency control of the multi-source power system. The integral time absolute error was used as the objective function. Moreover, the controller was also tuned to ensure that the tie-line power and the frequency of the multi-source power system were within the acceptable limits. A two-area power system was designed using MATLAB-Simulink tool, consisting of three types of power sources, viz., thermal power plant, hydro power plant, and gas-turbine power plant. The overall efficacy of the proposed algorithm was tested for two different case studies. In the first case study, both the areas were subjected to a load increment of 0.01 p.u. In the second case, the two areas were subjected to different load increments of 0.03 p.u and 0.02 p.u, respectively. Furthermore, the settling time and the peak overshoot were considered to measure the effect on the frequency deviation and on the tie-line response. For the first case study, the settling times for the frequency deviation in area-1, the frequency deviation in area-2, and the tie-line power flow were 8.5 s, 5.5 s, and 3.0 s, respectively. In comparison, these values were 8.7 s, 6.1 s, and 5.5 s, using PSO; 8.7 s, 7.2 s, and 6.5 s, using FA; and 9.0 s, 8.0 s, and 11.0 s using GSA. Similarly, for case study II, these values were: 5.5 s, 5.6 s, and 5.1 s, using the proposed algorithm; 6.2 s, 6.3 s, and 5.3 s, using PSO; 7.0 s, 6.5 s, and 10.0 s, using FA; and 8.5 s, 7.5 s, and 12.0 s, using GSA. Thus, the proposed algorithm performed better than the other techniques.


Author(s):  
Peter Anuoluwapo Gbadega ◽  
Akshay Kumar Saha

Frequency control is becoming increasingly critical today due to the growing size and changing structure of complex interconnected power networks. Scaling up economic pressures for efficiency and reliability of the power system has necessitated a requirement for maintaining system frequency, and tie-line power flows as close as possible to scheduled values. High-frequency deviations may degrade load performance, damage equipment, resulting in overloading of transmission lines, which may interfere with system protection schemes, and, finally, may also result in an unstable condition of the power system. More so, Load Frequency Control ( LFC) plays a vital role in the modern power system as an auxiliary service to support power exchanges and, at the same time, to provide better conditions for the trading of electricity. Therefore, the tuning of the dynamic controller (i.e., net frequency and net power interchange errors) is a significant factor in achieving optimum LFC performance. Appropriate tuning of the controller parameters is required in order to achieve excellent control action. In view of this, this paper introduces the dynamic tuning of controller parameters in a two-area multi-source power system with an AC-DC parallel tie line for optimum load-frequency control performance. Matlab/Simulink software is used to realize the system simulation. System dynamic performance is observed for conventional PID tuning by the Ziegler Nichols method and the Kitamori method, fuzzy logic controllers, fuzzy-logic PID controllers, fuzzy PID controllers, and polar-Fuzzy controllers. Furthermore, the frequency and tie-line power response of the interconnected areas were compared based on the setting-time, peak-overshoot, and peak-undershoot. The simulation results show that the responses of the fuzzy-based controllers are faster than those of the classical controllers, resulting in minimized frequency and tie-line power deviations.


Sign in / Sign up

Export Citation Format

Share Document