scholarly journals WITHDRAWN: Aluminium electroplated from ionic liquids as protective coating against steel corrosion

Author(s):  
Stefano Caporali ◽  
Alessio Fossati ◽  
Alessandro Lavacchi ◽  
Ilaria Perissi ◽  
Alexander Tolstogouzov ◽  
...  
2008 ◽  
Vol 50 (2) ◽  
pp. 534-539 ◽  
Author(s):  
Stefano Caporali ◽  
Alessio Fossati ◽  
Alessandro Lavacchi ◽  
Ilaria Perissi ◽  
Alexander Tolstogouzov ◽  
...  

Author(s):  
T. Nesane ◽  
S.S. Mnyakeni-Moleele ◽  
L.C. Murulana

SYNOPSIS The effectiveness of two synthesized ionic liquids, 1-(benzyloxy)-1-oxopropan-2-aminium 4-methylbenzenesulfonate (1-BOPAMS) and 4-(benzyloxy)-4-oxobutan-1-aminium 4-methylbenzenesulfonate (4-BOBAMS), were evaluated for mild steel corrosion inhibition in 1.0 M hydro-chloric acid solution, using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), and gravimetric techniques. Organic moieties responsible for the adsorption process on mild steel surface were investigated using Fourier transform infrared spectroscopy (FTIR). Gravimetric analysis revealed that the inhibition efficiency of 1-BOPAMS and 4-BOBAMS increased with concentration, with maximum inhibition values of 90.32% and 97.91%, respectively, at the highest concentration of the inhibitors. Gibbs free energy (nG°ads) values indicated a strong interaction between the mild steel surface and the molecules of the ionic liquids, and that the adsorption process was spontaneous. These values also show that the inhibitive nature of ionic liquids against mild steel corrosion is caused by a mixedtype of adsorption film formed on the steel surface. The Langmuir adsorption isotherm was used to describe the adsorption of ionic liquid molecules onto the mild steel surface. Polarization curves showed that 1-BOPAMS and 4-BOBAMS have a similar effect on both the anodic and cathodic half-reactions, indicating that they prevent the dissolution of mild steel through both physical and chemical process. Nyquist plots were defined by incomplete semicircle capacitive loops, showing that the charge transfer mechanism controls the corrosion of mild steel in acidic solution. Keywords: corrosion inhibition, ionic liquids, mild steel, adsorption isotherm.


The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


Sign in / Sign up

Export Citation Format

Share Document