scholarly journals Corrosion behaviour of Al/Al3Ti and Al/Al3Zr functionally graded materials produced by centrifugal solid-particle method: Influence of the intermetallics volume fraction

2011 ◽  
Vol 53 (6) ◽  
pp. 2058-2065 ◽  
Author(s):  
S.C. Ferreira ◽  
L.A. Rocha ◽  
E. Ariza ◽  
P.D. Sequeira ◽  
Yoshimi Watanabe ◽  
...  
Author(s):  
Ali Hajisadeghian ◽  
Abolfazl Masoumi ◽  
Ali Parvizi

In this research, SiC/Al A413.1 functionally graded materials (FGMs) were fabricated by the vibrating centrifugal solid particle method (VCSPM), and the effects of the SiC particles on the microstructure and thermo-mechanical properties of an A413.1 aluminium alloy were investigated. The benefits of a vibration during centrifugal casting of FGMs are illustrated. After designing and fabricating the centrifugal casting machine, cylindrical FGM specimens were produced using the centrifugal solid particle method (CSPM) and VCSPM. This study used SiC particles with an average particle size from 50 to 62 μm as reinforcements to fabricate A413.1-10 wt% SiC functionally gradient composites at three annular mould speeds (900–1500 and 2100 rpm) and with or without a vibration of the mould. The Brinell hardness was measured; the yield strength (YS), ultimate tensile strength (UTS) and Young’s modulus (E) were determined by tensile testing; the density was determined by the Archimedes method; and the thermal expansion coefficients were measured with a dilatometer. A comparison of the samples produced by the conventional method and VCSPM shows a significant reduction in the porosity and an increase in the distribution gradient of the reinforcing particles for the VCSPM case. It can be concluded that in both processes, the mechanical and thermal properties improved in most cases by moving from the inner radius to the outer radius because of the movement of particles towards the outer radius from the centrifugal force. The results also show that the use of a vibration dramatically increased the rate and speed of migration of gas bubbles towards the inner radius, and the mechanical properties (hardness, YS, UTS and E) improved by moving from the inner to outer radius due to an increase in the percentage of silicon carbide particles. Upon increasing the velocity and using the VCSPM, the slope of these changes becomes steeper than those for the vibration-free mode and at low rotation speeds.


1999 ◽  
Author(s):  
J. W. Gao ◽  
S. J. White ◽  
C. Y. Wang

Abstract A combined experimental and numerical investigation of the solidification process during gravity casting of functionally graded materials (FGMs) is conducted. Focus is placed on the interplay between the freezing front propagation and particle sedimentation. Experiments were performed in a rectangular ingot using pure substances as the matrix and glass beads as the particle phase. The time evolutions of local particle volume fractions were measured by bifurcated fiber optical probes working in the reflection mode. The effects of various processing parameters were explored. It is found that there exists a particle-free zone in the top portion of the solidified ingot, followed by a graded particle distribution region towards the bottom. Higher superheat results in slower solidification and hence a thicker particle-free zone and a higher particle concentration near the bottom. The higher initial particle volume fraction leads to a thinner particle-free region. Lower cooling temperatures suppress particle settling. A one-dimensional solidification model was also developed, and the model equations were solved numerically using a fixed-grid, finite-volume method. The model was then validated against the experimental results, and the validated computer code was used as a tool for efficient computational prototyping of an Al/SiC FGM.


2006 ◽  
Vol 74 (5) ◽  
pp. 861-874 ◽  
Author(s):  
Florin Bobaru

We present a numerical approach for material optimization of metal-ceramic functionally graded materials (FGMs) with temperature-dependent material properties. We solve the non-linear heterogeneous thermoelasticity equations in 2D under plane strain conditions and consider examples in which the material composition varies along the radial direction of a hollow cylinder under thermomechanical loading. A space of shape-preserving splines is used to search for the optimal volume fraction function which minimizes stresses or minimizes mass under stress constraints. The control points (design variables) that define the volume fraction spline function are independent of the grid used in the numerical solution of the thermoelastic problem. We introduce new temperature-dependent objective functions and constraints. The rule of mixture and the modified Mori-Tanaka with the fuzzy inference scheme are used to compute effective properties for the material mixtures. The different micromechanics models lead to optimal solutions that are similar qualitatively. To compute the temperature-dependent critical stresses for the mixture, we use, for lack of experimental data, the rule-of-mixture. When a scalar stress measure is minimized, we obtain optimal volume fraction functions that feature multiple graded regions alternating with non-graded layers, or even non-monotonic profiles. The dominant factor for the existence of such local minimizers is the non-linear dependence of the critical stresses of the ceramic component on temperature. These results show that, in certain cases, using power-law type functions to represent the material gradation in FGMs is too restrictive.


Sign in / Sign up

Export Citation Format

Share Document