High temperature oxidation of AlCrFe complex metallic alloys

2014 ◽  
Vol 89 ◽  
pp. 118-126 ◽  
Author(s):  
N. Prud’homme ◽  
P. Ribot ◽  
M. Herinx ◽  
P. Gille ◽  
B. Bauer ◽  
...  
2009 ◽  
Vol 1170 ◽  
Author(s):  
Audric Saillard ◽  
Mohammed Cherkaoui ◽  
Laurent Capolungo ◽  
Esteban P. Busso

AbstractThis work investigates the critical stress and morphological evolutions which occur during the high-temperature oxidation of metallic alloys for SOFC interconnects. Two mechanisms of stress generation are considered related to (1) the local volume change associated with the direct oxidation of the metal and to (2) a secondary oxidation process within grain boundaries. A specific formulation is developed to include the influence of the stress state at the metal-oxide interface on the local oxidation kinetics. The oxidation of a chromia-forming SOFC interconnect metallic alloy is simulated and stress and morphological evolutions are investigated.


2003 ◽  
Vol 100 (1) ◽  
pp. 73-82
Author(s):  
Y. Riquier ◽  
D. Lassance ◽  
I. Li ◽  
J. M. Detry ◽  
A. Hildenbrand

2013 ◽  
Vol 51 (10) ◽  
pp. 743-751 ◽  
Author(s):  
Seon-Hui Lim ◽  
Jae-Sung Oh ◽  
Young-Min Kong ◽  
Byung-Kee Kim ◽  
Man-Ho Park ◽  
...  

2016 ◽  
Vol 54 (6) ◽  
pp. 390-399 ◽  
Author(s):  
Dong Bok Lee ◽  
Shae Kwang Kim ◽  
Soon Yong Park

Alloy Digest ◽  
2006 ◽  
Vol 55 (6) ◽  

Abstract AK Steel 441 has good high-temperature strength, an equiaxed microstructure, and good high-temperature oxidation resistance. The alloy is a niobium-bearing ferritic stainless steel. This datasheet provides information on composition, hardness, and tensile properties as well as deformation. It also includes information on high temperature performance and corrosion resistance as well as forming and joining. Filing Code: SS-965. Producer or source: AK Steel.


Sign in / Sign up

Export Citation Format

Share Document