Pyocyanin-modifying genes phzM and phzS regulated the extracellular electron transfer in microbiologically-influenced corrosion of X80 carbon steel by Pseudomonas aeruginosa

2020 ◽  
Vol 164 ◽  
pp. 108355 ◽  
Author(s):  
Luyao Huang ◽  
Ye Huang ◽  
Yuntian Lou ◽  
Hongchang Qian ◽  
Dake Xu ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohor Chatterjee ◽  
Yu Fan ◽  
Fang Cao ◽  
Aaron A. Jones ◽  
Giovanni Pilloni ◽  
...  

AbstractMicrobiologically influenced corrosion (MIC) is recognized as a considerable threat to carbon steel asset integrity in the oil and gas industry. There is an immediate need for reliable and broadly applicable methods for detection and monitoring of MIC. Proteins associated with microbial metabolisms involved in MIC could serve as useful biomarkers for MIC diagnosis and monitoring. A proteomic study was conducted using a lithotrophically-grown bacterium Desulfovibrio ferrophilus strain IS5, which is known to cause severe MIC in seawater environments. Unique proteins, which are differentially and uniquely expressed during severe microbial corrosion by strain IS5, were identified. This includes the detection of a multi-heme cytochrome protein possibly involved in extracellular electron transfer in the presence of the carbon steel. Thus, we conclude that this newly identified protein associated closely with severe MIC could be used to generate easy-to-implement immunoassays for reliable detection of microbiological corrosion in the field.


Biofouling ◽  
2019 ◽  
Vol 35 (6) ◽  
pp. 669-683 ◽  
Author(s):  
Gregory P. Krantz ◽  
Kilean Lucas ◽  
Erica L.- Wunderlich ◽  
Linh T. Hoang ◽  
Recep Avci ◽  
...  

Cell ◽  
2020 ◽  
Vol 182 (4) ◽  
pp. 919-932.e19 ◽  
Author(s):  
Scott H. Saunders ◽  
Edmund C.M. Tse ◽  
Matthew D. Yates ◽  
Fernanda Jiménez Otero ◽  
Scott A. Trammell ◽  
...  

2020 ◽  
Author(s):  
luyan ma

<p>Microbial nanowires are nanofilaments that could offer an extracellular electron transfer (EET) pathway linking the bacterial respiratory chain to external surfaces, such as oxidized metals in the environment and engineered electrodes in renewable energy devices. Filaments proposed to function as nanowires have been reported in multiple bacteria, yet it remains largely unclear about the composition and electron transfer mechanism of bacterial nanowires. Pseudomonas aeruginosa is an environmental and electrochemically active bacterium. In this study, we found nanotube-like extracellular filaments in P. aeruginosa biofilms, which were bacterial membrane extensions similar to the nanowires reported in Shewanella oneidensis. Remarkably, conductive probe atomic force microscope showed measurable conductivity of these extracellular filaments, suggesting that they may function as nanowires in P. aeruginosa. Our results also indicated that the electron shuttle pyocyanin significantly affected the conductivity of P. aeruginosa nanowires, suggesting that the electron transfer mechanism of P. aeruginosa nanowires was different from S. oneidensis. Furthermore, factors that impact biofilm formation, such as flagella, type IV pili, and exopolysaccharides, were not essential for nanowires formation, while affect the formation and length of nanowires of P. aeruginosa. Taken together, this is the first report that investigated the role of electron shuttle on the conductivity of nanowires and factors that affected nanowires formation.</p>


Sign in / Sign up

Export Citation Format

Share Document