scholarly journals Travelling-wave solutions bifurcating from relative periodic orbits in plane Poiseuille flow

2016 ◽  
Vol 344 (6) ◽  
pp. 448-455 ◽  
Author(s):  
Subhandu Rawat ◽  
Carlo Cossu ◽  
François Rincon
2014 ◽  
Vol 761 ◽  
pp. 348-359 ◽  
Author(s):  
Stefan Zammert ◽  
Bruno Eckhardt

AbstractWe study localised exact coherent structures in plane Poiseuille flow that are relative periodic orbits. They are obtained from extended states in smaller periodically continued domains, by increasing the length to obtain streamwise localisation and then by increasing the width to achieve spanwise localisation. The states maintain the travelling wave structure of the extended states, which is then modulated by a localised envelope on larger scales. In the streamwise direction, the envelope shows exponential localisation, with different exponents on the upstream and downstream sides. The upstream exponent increases linearly with Reynolds number $\mathit{Re}$, but the downstream exponent is essentially independent of $\mathit{Re}$. In the spanwise direction the decay is compatible with a power-law localisation. As the width increases the localised state undergoes further bifurcations which add additional unstable directions, so that the edge state, the relative attractor on the boundary between the laminar and turbulent motions, in the system becomes chaotic.


2013 ◽  
Vol 721 ◽  
pp. 514-540 ◽  
Author(s):  
A. P. Willis ◽  
P. Cvitanović ◽  
M. Avila

AbstractSymmetry reduction by the method of slices is applied to pipe flow in order to obtain a quotient of the streamwise translation and azimuthal rotation symmetries of turbulent flow states. Within the symmetry-reduced state space, all travelling wave solutions reduce to equilibria, and all relative periodic orbits reduce to periodic orbits. Projections of these solutions and their unstable manifolds from their infinite-dimensional symmetry-reduced state space onto suitably chosen two- or three-dimensional subspaces reveal their interrelations and the role they play in organizing turbulence in wall-bounded shear flows. Visualizations of the flow within the slice and its linearization at equilibria enable us to trace out the unstable manifolds, determine close recurrences, identify connections between different travelling wave solutions and find, for the first time for pipe flows, relative periodic orbits that are embedded within the chaotic saddle, which capture turbulent dynamics at transitional Reynolds numbers.


2020 ◽  
Author(s):  
Miftachul Hadi

We review the work of Ranjit Kumar, R S Kaushal, Awadhesh Prasad. The work is still in progress.


Author(s):  
Andronikos Paliathanasis ◽  
Genly Leon ◽  
P. G. L. Leach

Abstract We apply the Painlevé test for the Benney and the Benney–Gjevik equations, which describe waves in falling liquids. We prove that these two nonlinear 1 + 1 evolution equations pass the singularity test for the travelling-wave solutions. The algebraic solutions in terms of Laurent expansions are presented.


Sign in / Sign up

Export Citation Format

Share Document