scholarly journals Effect of post-exercise lactate administration on glycogen repletion and signaling activation in different types of mouse skeletal muscle

2020 ◽  
Vol 3 ◽  
pp. 34-43
Author(s):  
Kenya Takahashi ◽  
Yu Kitaoka ◽  
Yutaka Matsunaga ◽  
Hideo Hatta
2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Kenya Takahashi ◽  
Yu Kitaoka ◽  
Yutaka Matsunaga ◽  
Hideo Hatta

2017 ◽  
Vol 63 (5) ◽  
pp. 323-330 ◽  
Author(s):  
Yumiko TAKAHASHI ◽  
Yutaka MATSUNAGA ◽  
Yuki TAMURA ◽  
Shin TERADA ◽  
Hideo HATTA

2021 ◽  
Author(s):  
Carlos Katashima ◽  
Thayana Micheletti ◽  
Alexandre Moura-Assis ◽  
Rodrigo Gaspar ◽  
Ludger Goeminne ◽  
...  

Abstract Hypothalamic interleukin-6 (IL6) exerts a broad metabolic control, including energy expenditure1, food consumption2, glucose homeostasis2, etc. Here we demonstrated that Interleukin-6 (IL6) activates the ERK1/2 pathway in the ventromedial hypothalamus (VMH), stimulating AMPK/ACC signaling and fatty acid oxidation in mice skeletal muscle. Bioinformatics analysis revealed that the hypothalamic IL6/ERK1-2 axis is closely associated with firing-rate-related genes in the hypothalamus and with fatty acid oxidation- and mitochondrial-related genes in skeletal muscle of genetically diverse BXD mice strains and humans. Using surgical denervation, pharmacological approaches, and transgenic mice, we showed that the hypothalamic IL6/ERK1/2 pathway requires the a2-adrenergic pathway to modify the fatty acid skeletal muscle metabolism. To address the physiological relevance of these findings, we demonstrated that this neuromuscular circuitry is required to underpin AMPK/ACC signaling activation and fatty acid oxidation post-exercise. Once the selective downregulation of IL6 receptor in VMH abolished the effects of exercise to sustain AMPK and ACC phosphorylation and fatty acid oxidation in the muscle post-exercise. Altogether, these data demonstrated that IL6/ERK axis in VMH controls fatty acid metabolism in mice skeletal muscle.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2140
Author(s):  
Yumiko Takahashi ◽  
Yutaka Matsunaga ◽  
Hiroki Yoshida ◽  
Terunaga Shinya ◽  
Ryo Sakaguchi ◽  
...  

We examined the effect of dietary carbohydrate intake on post-exercise glycogen recovery. Male Institute of Cancer Research (ICR) mice were fed moderate-carbohydrate chow (MCHO, 50%cal from carbohydrate) or high-carbohydrate chow (HCHO, 70%cal from carbohydrate) for 10 days. They then ran on a treadmill at 25 m/min for 60 min and administered an oral glucose solution (1.5 mg/g body weight). Compared to the MCHO group, the HCHO group showed significantly higher sodium-D-glucose co-transporter 1 protein levels in the brush border membrane fraction (p = 0.003) and the glucose transporter 2 level in the mucosa of jejunum (p = 0.004). At 30 min after the post-exercise glucose administration, the skeletal muscle and liver glycogen levels were not significantly different between the two diet groups. The blood glucose concentration from the portal vein (which is the entry site of nutrients from the gastrointestinal tract) was not significantly different between the groups at 15 min after the post-exercise glucose administration. There was no difference in the total or phosphorylated states of proteins related to glucose uptake and glycogen synthesis in skeletal muscle. Although the high-carbohydrate diet significantly increased glucose transporters in the jejunum, this adaptation stimulated neither glycogen recovery nor glucose absorption after the ingestion of post-exercise glucose.


2021 ◽  
pp. 101226
Author(s):  
André L. Queiroz ◽  
Sarah J. Lessard ◽  
Amanda T. Ouchida ◽  
Hygor N. Araujo ◽  
Dawit A. Gonçalves ◽  
...  

2006 ◽  
Vol 281 (42) ◽  
pp. 31478-31485
Author(s):  
Henning F. Kramer ◽  
Carol A. Witczak ◽  
Eric B. Taylor ◽  
Nobuharu Fujii ◽  
Michael F. Hirshman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document