Numerical calculation of primary slot leakage inductance of a Single-sided HTS linear induction motor used for linear metro

Cryogenics ◽  
2017 ◽  
Vol 82 ◽  
pp. 38-47 ◽  
Author(s):  
Dong Li ◽  
Yinghong Wen ◽  
Weili Li ◽  
Jin Fang ◽  
Junci Cao ◽  
...  
2013 ◽  
Vol 416-417 ◽  
pp. 156-163 ◽  
Author(s):  
Jin Rao ◽  
Jin Xu ◽  
De Zhi Liu ◽  
Xi Dang Yang ◽  
Xiao Peng Cui ◽  
...  

Based on the requirement of high-power linear propulsion system, a novel twelve-phase linear induction motor (LIM) with double-sided long stators was designed, and the winding construction of twelve-phase LIM was presented in this paper. On the basis of this, the mathematical model of ABC coordinates for this novel motor was derived, and the rule of the asymmetry of end-winding leakage inductance of the twelve-phase LIM with double-sided long stators, which is determined by the relative space position of the each phase end-winding in the motor, and then this rule was compared with the law of the asymmetry of end-winding leakage inductance of the multi-phase rotating motor. Simulation model of the motor was established, and the electromagnetic properties of the motor is calculated.


Author(s):  
Nicolás Toro García ◽  
Yeison Alberto Garcés Gómez ◽  
Fredy Edimer Hoyos Velasco

This work describes a method to characterize a three-phase linear induction motor in order to determine the various parameters used in its per-phase equivalent circuit by a DSP-based electric-drives system. In LIM (Linear Induction Motor), the air gap is very large compared with the RIMs (Rotary Induction Motors). Further, the secondary part normally does not have slotted structure. It is just made of aluminum and steel plates. Therefore, the effective air gap is larger than the physical air gap. High air gap makes a larger leakage inductance. It leads to lower efficiency and lower power factor. DC resistance test will be done to determine the value of Rs. The primary Inductance Ls will be calculated by running the LIM at synchronous speed. The secondary parameters i.e. Llr and Rr′ will be calculated by blocked-mover test. The experiment for no load test is shown and include a DC motor coupled to the LIM under test. Two methods to calculate the secondary parameters are described.


Sign in / Sign up

Export Citation Format

Share Document