Research of Mathematical Model of the Twelve-Phase Linear Induction Motor with Double-Sided Long Stators

2013 ◽  
Vol 416-417 ◽  
pp. 156-163 ◽  
Author(s):  
Jin Rao ◽  
Jin Xu ◽  
De Zhi Liu ◽  
Xi Dang Yang ◽  
Xiao Peng Cui ◽  
...  

Based on the requirement of high-power linear propulsion system, a novel twelve-phase linear induction motor (LIM) with double-sided long stators was designed, and the winding construction of twelve-phase LIM was presented in this paper. On the basis of this, the mathematical model of ABC coordinates for this novel motor was derived, and the rule of the asymmetry of end-winding leakage inductance of the twelve-phase LIM with double-sided long stators, which is determined by the relative space position of the each phase end-winding in the motor, and then this rule was compared with the law of the asymmetry of end-winding leakage inductance of the multi-phase rotating motor. Simulation model of the motor was established, and the electromagnetic properties of the motor is calculated.

2013 ◽  
Vol 416-417 ◽  
pp. 711-717
Author(s):  
Zhi Hua Zhang ◽  
Li Ming Shi ◽  
Hua Cai ◽  
Yao Hua Li

Linear drive system is widely applied in mid-low speed Maglev, subway transportation, etc. It is composed of two principal components, high power converter and linear induction motor. The converter and motor are designed separately, whole drive system usually use circuit simulation by extracting the mathematical model of linear induction motor. However, LIM has complex electromagnetic field, which needs to considerate the transverse and longitude end effects [1-. This makes LIM mathematical model inaccurate, hard to simulate the real dynamic characteristics of LIM.


1992 ◽  
Vol 112 (9) ◽  
pp. 869-876 ◽  
Author(s):  
Takafumi Koseki ◽  
Toshimitsu Morizane ◽  
Eisuke Masada

2017 ◽  
Vol 3 (4) ◽  
pp. 107-126
Author(s):  
Andrey V Solomin

The problems of improvement of modern types of transport and creation of new ones are important and topical for the human society development. One of the most promising and environmentally-friendly modes of transport is the high-speed maglev transport, moving at speeds of approximately 500 km/h. Objective. Justification of linear induction motor, development and research of various constructions of this type of motors. Methods. Description of linear induction motor with longitudinal and transverse magnetic flux for combined traction and lateral stabilisation system of maglev transport, having increased lateral stabilisation forces. The mathematical modelling of magnetomotive force (MF) in the air gap of traction linear motor of this type has been conducted. To analyse the MF the assumption has been made about even distribution of magnetic induction in the air gap in transverse direction and its sinusoidal longitudinal direction, making it possible to develop new mathematical model of MF distribution in the air gap of linear induction motor with longitudinal and transverse magnetic flux Results. The developed mathematical model for calculation of MF on traction linear machine will enable increasing accuracy of traction and lateral stabilisation combined system forces for maglev transport. The same relates to mutual location of inductor to the secondary element. All this proves the successful ten-year commercial operation experience of magnetically suspended train carrying passengers from an airport to Shanghai, P.R. China. The values of traction and lateral stabilisation forces of linear induction motor with longitudinal and transverse magnetic flux is greatly influenced by the character of current distribution in the secondary element. The character itself is influenced by MF distribution in the air gap.


Sign in / Sign up

Export Citation Format

Share Document