scholarly journals Base-pair Opening Dynamics of Nucleic Acids in Relation to Their Biological Function

2019 ◽  
Vol 17 ◽  
pp. 797-804 ◽  
Author(s):  
Seo-Ree Choi ◽  
Na-Hyun Kim ◽  
Ho-Seong Jin ◽  
Yeo-Jin Seo ◽  
Juhyun Lee ◽  
...  
2002 ◽  
Vol 35 (4) ◽  
pp. 431-478 ◽  
Author(s):  
Emmanuelle Delagoutte ◽  
Peter H. von Hippel

1. Mechanisms of nucleic acid (NA) unwinding by helicases 4322. Helicases may take advantage of ‘breathing’ fluctuations in dsNAs 4342.1 Stability and dynamics of dsNAs 4342.2 dsNAs ‘breathe’ in isolation 4352.3 Thermodynamics of terminal base pairs of dsNA 4382.4 Thermal fluctuations may be responsible for sequential base-pair opening at replication forks 4392.5 Helicases may capture single base-pair opening events sequentially 4403. Biochemical properties of helicases 4433.1 Binding of NAs 4433.2 Binding and hydrolysis of NTP 4453.3 Coordination between NA binding and NTP binding and hydrolysis activities 4464. Helicase structures and mechanistic consequences 4474.1 Amino-acid sequence analysis reveals conserved motifs that constitute the NTP-binding pocket and a portion of the NA-binding site 4474.2 Organization of hepatitis virus C NS3 RNA helicase 4494.2.1 Biochemical properties of HCV NS3 4494.2.2 Crystal structures of HCV NS3 helicase 4504.2.2.1 The apoprotein 4504.2.2.2 The protein–dU8 complex 4504.2.3 A possible unwinding mechanism 4524.2.4 What is the functional oligomeric state of HCV NS3? 4524.3 Organization of the PcrA helicase 4534.3.1 The apoenzyme and ADP–PcrA complex 4544.3.2 The protein–DNA–sulfate complex 4564.3.3 The PcrA–DNA–ADPNP complex 4564.3.4 A closer look at the NTP-binding site in the crystal structure of PcrA–ADPNP–DNA 4574.3.5 Communication between domains A and B 4574.3.6 How might ssDNA stimulate the ATPase activity of PcrA? 4574.3.7 A possible helicase translocation mechanism 4584.3.8 A possible unwinding mechanism 4584.4 Organization of the Rep helicase 4594.4.1 Biochemical properties 4594.4.2 Crystal structure of Rep bound to ssDNA 4624.5 Organization of the RecG helicase 4624.6 Hexameric helicases 4664.6.1 Insights from crystal structures of hexameric helicases 4674.6.2 Possible translocation and unwinding mechanisms 4685. Conclusions 4696. Acknowledgments 4727. References 472Helicases are proteins that harness the chemical free energy of ATP hydrolysis to catalyze the unwinding of double-stranded nucleic acids. These enzymes have been much studied in isolation, and here we review what is known about the mechanisms of the unwinding process. We begin by considering the thermally driven ‘breathing’ of double-stranded nucleic acids by themselves, in order to ask whether helicases might take advantage of some of these breathing modes. We next provide a brief summary of helicase mechanisms that have been elucidated by biochemical, thermodynamic, and kinetic studies, and then review in detail recent structural studies of helicases in isolation, in order to correlate structural findings with biophysical and biochemical results. We conclude that there are certainly common mechanistic themes for helicase function, but that different helicases have devised solutions to the nucleic acid unwinding problem that differ in structural detail. In Part II of this review (to be published in the next issue of this journal) we consider how these mechanisms are further modified to reflect the functional coupling of these proteins into macromolecular machines, and discuss the role of helicases in several central biological processes to illustrate how this coupling actually works in the various processes of gene expression.


2021 ◽  
Vol 22 (6) ◽  
pp. 3234
Author(s):  
Juhyun Lee ◽  
Si-Eun Sung ◽  
Janghyun Lee ◽  
Jin Young Kang ◽  
Joon-Hwa Lee ◽  
...  

Riboswitches are segments of noncoding RNA that bind with metabolites, resulting in a change in gene expression. To understand the molecular mechanism of gene regulation in a fluoride riboswitch, a base-pair opening dynamics study was performed with and without ligands using the Bacillus cereus fluoride riboswitch. We demonstrate that the structural stability of the fluoride riboswitch is caused by two steps depending on ligands. Upon binding of a magnesium ion, significant changes in a conformation of the riboswitch occur, resulting in the greatest increase in their stability and changes in dynamics by a fluoride ion. Examining hydrogen exchange dynamics through NMR spectroscopy, we reveal that the stabilization of the U45·A37 base-pair due to the binding of the fluoride ion, by changing the dynamics while maintaining the structure, results in transcription regulation. Our results demonstrate that the opening dynamics and stabilities of a fluoride riboswitch in different ion states are essential for the genetic switching mechanism.


Biochemistry ◽  
2013 ◽  
Vol 52 (51) ◽  
pp. 9275-9285 ◽  
Author(s):  
Belinda B. Wenke ◽  
Leah N. Huiting ◽  
Elisa B. Frankel ◽  
Benjamin F. Lane ◽  
Megan E. Núñez

1986 ◽  
pp. 31-44
Author(s):  
Jean Louis Leroy ◽  
Daniel Broseta ◽  
Nicolas Bolo ◽  
Maurice Guéron

2020 ◽  
Vol 119 (6) ◽  
pp. 1147-1156
Author(s):  
Zachary R. Churcher ◽  
Devid Garaev ◽  
Howard N. Hunter ◽  
Philip E. Johnson

Molecules ◽  
2012 ◽  
Vol 17 (10) ◽  
pp. 11947-11964 ◽  
Author(s):  
Youri Timsit
Keyword(s):  

Biochemistry ◽  
2001 ◽  
Vol 40 (37) ◽  
pp. 11065-11072 ◽  
Author(s):  
Stephen W. Powell ◽  
Lihong Jiang ◽  
Irina M. Russu

Sign in / Sign up

Export Citation Format

Share Document