scholarly journals Full-scale long-term monitoring of mine-induced vibrations for soil-structure interaction research using dimensionless response spectra

Author(s):  
Krystyna Kuzniar ◽  
Tadeusz Tatara
Author(s):  
Athanasios Vratsikidis ◽  
Dimitris Pitilakis ◽  
Anastasios Anastasiadis ◽  
Anastasios Kapouniaris

2022 ◽  
Vol 8 (1) ◽  
pp. 04021019
Author(s):  
Robert Pitt ◽  
Megan Otto ◽  
Adam Questad ◽  
Stacey Isaac ◽  
Maia Colyar ◽  
...  

2021 ◽  
Vol 141 ◽  
pp. 106523
Author(s):  
C. Amendola ◽  
F. de Silva ◽  
A. Vratsikidis ◽  
D. Pitilakis ◽  
A. Anastasiadis ◽  
...  

Author(s):  
Young-Sun Jang ◽  
Kwang-Ho Joo ◽  
Chong-Hak Kim

The SSI (Soil-Structure Interaction) analyses are being performed for the APR1400 (Advanced Power Reactor 1400MWe, Old name - KNGR ; Korean Next Generation Reactor) design, because the APR1400 is developed as a Standard Nuclear Power Plant concept enveloping suitable soil conditions. For the SSI analyses, SASSI program which adopts the Flexible Volume Method is used. In the SSI analyses, there can be uncertainties by Bond and De-bond problem between the structure and lateral soil elements. According to ASCE Standard 4, one method to address this concern is to assume no connectivity between structure and lateral soil over the upper half of the embedment of 20ft (6m), whichever is less. This study is performed as a part of the parametric analyses for the APR1400 seismic analyses to address the concern of the potential embedment effect on the in-structure response spectra due to connectivity between structure and lateral soil. In this study, 4 model cases are analyzed to check the potential embedment effect — Full connection, 20ft no connectivity which is defined as a minimum De-bond depth of the soil in ASCE Standard 4 and 26.5ft no connectivity between structure and lateral soil over the upper half of the embedment. Last one is full no connection for only reference. The in-structure response spectra are compared with the response spectra without considering the embedment effect.


Author(s):  
David K. Nakaki ◽  
Philip S. Hashimoto ◽  
James J. Johnson ◽  
Yahya Bayraktarli ◽  
Olivier Zuchuat

Probabilistic seismic soil-structure interaction (SSI) analysis was performed for the Mu¨hleberg Nuclear Power Plant Reactor and SUSAN Buildings in support of the seismic probabilistic saftety assessment of the plant. An efficient hybrid method, employing computer programs SASSI2000 and CLASSI presented in a companion paper, was used in this analysis. The method takes advantage of the capability of SASSI2000 to analyze embedded structures with irregular geometry and the computational efficiency of CLASSI to rapidly perform the SSI response analysis of large structure models. Fixed base finite element models of the buildings were first developed from which the structure geometry, nodal masses, natural frequencies, and mode shapes were extracted. The structure embedments were modeled using SASSI2000. Impedance functions and scattering vectors were calculated by imposing rigid body constraints to the embedded foundation. The fixed base structure dynamic properties and the foundation impedances and scattering functions were input to CLASSI to perform the response analysis. The probabilistic analysis was performed following the Latin Hypercube Simulation (LHS) approach documented in NUREG/CR-2015. Variables defined by probability distributions were sampled according to a stratified sampling approach. The combination of the parameters for each simulation was determined by Latin Hypercube experimental design. Variables in the LHS included the earthquake ground acceleration time histories, structure stiffness and damping, and soil stiffness and damping. Thirty response simulations were performed using CLASSI in which the variable values were randomly selected. The use of CLASSI has the advantage that the response analysis simulations can be executed in a fraction of the time that would be required with SASSI2000 alone. For each simulation, in-structure response spectra (ISRS) were calculated at selected locations in the buildings. Probabilistic distributions, described by the median and 84th percentile response spectra, were calculated from the thirty simulations. The probabilistic ISRS are subsequently used in the seismic fragility evaluations of selected essential equipment.


2008 ◽  
Vol 317 (1-2) ◽  
pp. 78-87 ◽  
Author(s):  
S LYKO ◽  
T WINTGENS ◽  
D ALHALBOUNI ◽  
S BAUMGARTEN ◽  
D TACKE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document