scale modelling
Recently Published Documents


TOTAL DOCUMENTS

1041
(FIVE YEARS 239)

H-INDEX

46
(FIVE YEARS 9)

Author(s):  
Ahmadreza Farrokhnia ◽  
Andrey P. Jivkov ◽  
Graham Hall ◽  
Paul Mummery

Abstract The UK Advanced Gas-Cooled reactors (AGRs) have cores made of graphite bricks with dual functions: as structural elements of the core, providing space for and separating fuel and control rods; and as moderator of the nuclear reaction. Nuclear graphite is a quasi-brittle material, where the dominant mechanism for failure is cracking. While cracking of isolated bricks is expected due to operation-induced changes in graphite microstructure and stress fields, these could be tolerated as far as the overall structural function of the core is maintained. Assessment of the whole core behaviour has been previously done with whole scale models where bricks have been considered as rigid body elements connected by elastic-brittle springs. This approach does not allow for the realistic assessment of the stresses in the bricks and associated brick cracking. Reported here are results from an ongoing project, which addresses this shortcoming. The proposed model uses deformable bricks with appropriate interactions, allowing for physically realistic whole core analysis. The results are focused on the damage that a graphite moderated reactor develops during a life cycle, how this affects the behaviour of the whole core, and how changes in bricks' behaviour impacts the core integrity. The proposed methodology is a major step towards high-fidelity assessment of AGRs' fitness for service, required for supporting continuous safe operation and life-extension decisions.


2021 ◽  
Author(s):  
Xingyu Zhang ◽  
◽  
Matteo Ciantia ◽  
Jonathan Knappett ◽  
Anthony Leung ◽  
...  

When testing an 1:N geotechnical structure in the centrifuge, it is desirable to choose a large scale factor (N) that can fit the small-scale model in a model container and avoid unwanted boundary effects, however, this in turn may cause scale effects when the structure is overscaled. This is more significant when it comes to small-scale modelling of sinker root-soil interaction, where root-particle size ratio is much lower. In this study the Distinct Element Method (DEM) is used to investigate this problem. The sinker root of a model root system under axial loading was analysed, with both upward and downward behaviour compared with the Finite Element Method (FEM), where the soil is modelled as a continuum in which case particle-size effects are not taken into consideration. Based on the scaling law, with the same prototype scale and particle size distribution, different scale factors/g-levels were applied to quantify effects of the ratio of root diameter (𝑑𝑟) to mean particle size (𝐷50) on the root rootsoil interaction.


Author(s):  
Alfonso Mastropietro ◽  
Filippo Palumbo ◽  
Silvia Orte ◽  
Michele Girolami ◽  
Francesco Furfari ◽  
...  

AbstractAgeing is a multi-factorial physiological process and the development of novel IoT systems, tools and devices, specifically targeted to older people, must be based on a holistic framework built on robust scientific knowledge in different health domains. Furthermore, interoperability must be guaranteed using standardized frameworks or approaches. These aspects still largely lack in the specific literature. The main aim of the paper is to develop a new ontology (the NESTORE ontology) to extend the available ontologies provided by universAAL-IoT (uAAL-IoT). The ontology is based on a multidomain healthy ageing holistic model, structuring well-assessed scientific knowledge, specifically targeted to healthy older adults aged between 65 and 75. The tool is intended to support, and standardize heterogeneous data about ageing in compliance with the uAAL-IoT framework. The NESTORE ontology covers all the relevant concepts to represent 3 significant domains of ageing: (1) Physiological Status and Physical Activity Behaviour; (2) Nutrition; and (3) Cognitive and Mental Status and Social Behaviour. In total, 12 sub-ontologies were modelled with more than 60 classes and sub-classes referenced among them by using more than 100 relations and around 20 enumerations. The proposed ontology increases the uAAL collection by 40%. NESTORE ontology provides innovation both in terms of semantic content and technological approach. The thorough use of this ontology can support the development of a decision support system, to promote healthy ageing, with the capacity to do dynamic multi-scale modelling of user-specific data based on the semantic annotations of users’ profile.


2021 ◽  
Vol 2 (4) ◽  
pp. 1037-1056
Author(s):  
Arn Joerger ◽  
Ioannis Spiropoulos ◽  
Robert Dannecker ◽  
Albert Albers

Friction induced vibrations such as brake squealing, or juddering are still challenging topics in product engineering processes. So far, this topic was particularly relevant for the automobile industry because they were the main market for disc brake systems. However, since mobility habits change, disc brake system are more often to be found on bikes or e-scooters. In all of these systems, vibrations are excited in contacts on the micro scale but affect the user comfort and safety on the macro scale. Therefore, the aim of this cross-scale method is to analyze a system on a micro scale and to transfer the excitation mechanisms on a macro scale system. To address both scales, the current work presents a finite element model on the micro scale for the determination of the coefficient of friction, which is transferred to the macro scale and used in a multi-body simulation. Finally, a finite element modal analysis is conducted, which allowed us to evaluate the brake system behavior on base of an excitation.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2225
Author(s):  
Piotr Hajder ◽  
Łukasz Rauch

Numerical computations are usually associated with the High Performance Computing. Nevertheless, both industry and science tend to involve devices with lower power in computations. This is especially true when the data collecting devices are able to partially process them at place, thus increasing the system reliability. This paradigm is known as Edge Computing. In this paper, we propose the use of devices at the edge, with lower computing power, for multi-scale modelling calculations. A system was created, consisting of a high-power device—a two-processor workstation, 8 RaspberryPi 4B microcomputers and 8 NVidia Jetson Nano units, equipped with GPU processor. As a part of this research, benchmarking was performed, on the basis of which the computational capabilities of the devices were classified. Two parameters were considered: the number and performance of computing units (CPUs and GPUs) and the energy consumption of the loaded machines. Then, using the calculated weak scalability and energy consumption, a min–max-based load optimization algorithm was proposed. The system was tested in laboratory conditions, giving similar computation time with same power consumption for 24 physical workstation cores vs. 8x RaspberryPi 4B and 8x Jetson Nano. The work ends with a proposal to use this solution in industrial processes on example of hot rolling of flat products.


2021 ◽  
Vol 18 (23) ◽  
pp. 6313-6328
Author(s):  
Håkan Pleijel ◽  
Jenny Klingberg ◽  
Michelle Nerentorp ◽  
Malin C. Broberg ◽  
Brigitte Nyirambangutse ◽  
...  

Abstract. Mercury, Hg, is one of the most problematic metals from an environmental perspective. To assess the problems caused by Hg in the environment, it is crucial to understand the processes of Hg biogeochemistry, but the exchange of Hg between the atmosphere and vegetation is not sufficiently well characterized. We explored the mercury concentration, [Hg], in foliage from a diverse set of plant types, locations and sampling periods to study whether there is a continuous accumulation of Hg in leaves and needles over time. Measurements of [Hg] were made for deciduous and conifer trees in Gothenburg, Sweden (botanical garden and city area), as well as for evergreen trees in Rwanda. In addition, data for wheat from an ozone experiment conducted at Östad, Sweden, were included. Conifer data were quantitatively compared with literature data. In every case where older foliage was directly compared with younger, [Hg] was higher in older tissue. Covering the range from the current year up to 4-year-old needles in the literature data, there was no sign of Hg saturation in conifer needles with age. Thus, over timescales of approximately 1 month to several years, the Hg uptake in foliage from the atmosphere always dominated over Hg evasion. Rwandan broadleaved trees had generally older leaves due to lack of seasonal abscission and higher [Hg] than Swedish broadleaved trees. The significance of atmospheric Hg uptake in plants was shown in a wheat experiment where charcoal-filtrated air led to significantly lower leaf [Hg]. To search for general patterns, the accumulation rates of Hg in the diverse set of tree species in the Gothenburg area were related to the specific leaf area (SLA). Leaf-area-based [Hg] was negatively and non-linearly correlated with SLA, while mass-based [Hg] had a somewhat weaker positive relationship with SLA. An elaborated understanding of the relationship behind [Hg] and SLA may have the potential to support large-scale modelling of Hg uptake by vegetation and Hg circulation.


2021 ◽  
Author(s):  
Henri-Joël Dossou ◽  
Brice Tenté ◽  
Gualbert Houémènou ◽  
Mariano Davy Sossou ◽  
Jean-Pierre Rossi ◽  
...  

Abstract Urbanization consist in a complex and deep human-driven environmental change that strongly impacts the ecology and evolution of living organisms, including pathogens, reservoir and vector species hence human health. Quantitative proxies of urban landscapes may be very useful to sum-up such a complexity and to guide fundamental and applied research as well as urban planning programs. Geographic Information Systems (GIS) provide landscape and uses metrics which can be investigated through multivariate analyses, thus providing pertinent synthetic landscape descriptors. As such, our study describes the fine-scale modelling of three urban neighborhoods of Cotonou city, Benin, using GIS, landscape metrics and Principal Component Analysis (PCA). Spatial variability between and within neighborhoods revealed different levels of variability, with elements differentiating the three areas from each other, while local neighbourhood-specific variations were also evidenced. We found that Cotonou landscapes are strongly influenced by their history, the natural environment in which they develop as well as the urban planning trajectories. This case study shows that PCA-analyzed of GIS-based metrics may be very relevant to describe and understand the variability of urban landscapes at different scales, thus constituting a valuable tool for urban management of African cities.


Sign in / Sign up

Export Citation Format

Share Document