scholarly journals Evaluating geosynthetic base stabilization on lateritic gravel and granular material under cyclic moving wheel loads

Author(s):  
Gabriel Orquizas Mattielo Pedroso ◽  
Gabriel Ramos ◽  
Jefferson Lins da Silva
Keyword(s):  
Author(s):  
Joachim R. Sommer ◽  
Nancy R. Wallace

After Howell (1) had shown that ruthenium red treatment of fixed frog skeletal muscle caused collapse of the intermediate cisternae of the sarcoplasmic reticulum (SR), forming a pentalaminate structure by obi iterating the SR lumen, we demonstrated that the phenomenon involves the entire SR including the nuclear envelope and that it also occurs after treatment with other cations, including calcium (2,3,4).From these observations we have formulated a hypothesis which states that intracellular calcium taken up by the SR at the end of contraction causes the M rete to collapse at a certain threshold concentration as the first step in a subsequent centrifugal zippering of the free SR toward the junctional SR (JSR). This would cause a) bulk transport of SR contents, such as calcium and granular material (4) into the JSR and, b) electrical isolation of the free SR from the JSR.


Author(s):  
Awtar Krishan ◽  
Dora Hsu

Cells exposed to antitumor plant alkaloids, vinblastine and vincristine sulfate have large proteinacious crystals and complexes of ribosomes, helical polyribosomes and electron-dense granular material (ribosomal complexes) in their cytoplasm, Binding of H3-colchicine by the in vivo crystals shows that they contain microtubular proteins. Association of ribosomal complexes with the crystals suggests that these structures may be interrelated.In the present study cultured human leukemic lymphoblasts (CCRF-CEM), were incubated with protein and RNA-synthesis inhibitors, p. fluorophenylalanine, puromycin, cycloheximide or actinomycin-D before the addition of crystal-inducing doses of vinblastine to the culture medium. None of these compounds could completely prevent the formation of the ribosomal complexes or the crystals. However, in cells pre-incubated with puromycin, cycloheximide, or actinomycin-D, a reduction in the number and size of the ribosomal complexes was seen. Large helical polyribosomes were absent in the ribosomal complexes of cells treated with puromycin, while in cells exposed to cycloheximide, there was an apparent reduction in the number of ribosomes associated with the ribosomal complexes (Fig. 2).


2015 ◽  
Vol 8 (1) ◽  
pp. 2005-2009
Author(s):  
Diandong Ren ◽  
Lance M. Leslie ◽  
Congbin Fu

 Legged locomotion of robots has advantages in reducing payload in contexts such as travel over deserts or in planet surfaces. A recent study (Li et al. 2013) partially addresses this issue by examining legged locomotion over granular media (GM). However, they miss one extremely significant fact. When the robot’s wheels (legs) run over GM, the granules are set into motion. Hence, unlike the study of Li et al. (2013), the viscosity of the GM must be included to simulate the kinematic energy loss in striking and passing through the GM. Here the locomotion in their experiments is re-examined using an advanced Navier-Stokes framework with a parameterized granular viscosity. It is found that the performance efficiency of a robot, measured by the maximum speed attainable, follows a six-parameter sigmoid curve when plotted against rotating frequency. A correct scaling for the turning point of the sigmoid curve involves the footprint size, rotation frequency and weight of the robot. Our proposed granular response to a load, or the ‘influencing domain’ concept points out that there is no hydrostatic balance within granular material. The balance is a synergic action of multi-body solids. A solid (of whatever density) may stay in equilibrium at an arbitrary depth inside the GM. It is shown that there exists only a minimum set-in depth and there is no maximum or optimal depth. The set-in depth of a moving robot is a combination of its weight, footprint, thrusting/stroking frequency, surface property of the legs against GM with which it has direct contact, and internal mechanical properties of the GM. If the vehicle’s working environment is known, the wheel-granular interaction and the granular mechanical properties can be grouped together. The unitless combination of the other three can form invariants to scale the performance of various designs of wheels/legs. Wider wheel/leg widths increase the maximum achievable speed if all other parameters are unchanged.


2012 ◽  
Vol 1 (2) ◽  
Author(s):  
Wei Zhen-hai ◽  
Wang Meng-shu ◽  
Zhang Ding-li

Soft Matter ◽  
2021 ◽  
Author(s):  
David Fischer ◽  
Ralf Stannarius ◽  
Karsten Tell ◽  
Peidong Yu ◽  
Matthias Sperl

Force networks play an important role in the stability of configurations when granular material is packed into a container. These networks can redirect part of the weight of grains inside...


1996 ◽  
Vol 308 ◽  
pp. 31-62 ◽  
Author(s):  
Chi-Hwa Wang ◽  
R. Jackson ◽  
S. Sundaresan

This paper presents a linear stability analysis of a rapidly sheared layer of granular material confined between two parallel solid plates. The form of the steady base-state solution depends on the nature of the interaction between the material and the bounding plates and three cases are considered, in which the boundaries act as sources or sinks of pseudo-thermal energy, or merely confine the material while leaving the velocity profile linear, as in unbounded shear. The stability analysis is conventional, though complicated, and the results are similar in all cases. For given physical properties of the particles and the bounding plates it is found that the condition of marginal stability depends only on the separation between the plates and the mean bulk density of the particulate material contained between them. The system is stable when the thickness of the layer is sufficiently small, but if the thickness is increased it becomes unstable, and initially the fastest growing mode is analogous to modes of the corresponding unbounded problem. However, with a further increase in thickness a new mode becomes dominant and this is of an unusual type, with no analogue in the case of unbounded shear. The growth rate of this mode passes through a maximum at a certain value of the thickness of the sheared layer, at which point it grows much faster than any mode that could be shared with the unbounded problem. The growth rate of the dominant mode also depends on the bulk density of the material, and is greatest when this is neither very large nor very small.


Sign in / Sign up

Export Citation Format

Share Document