Shrinkage variable selection and estimation in proportional hazards models with additive structure and high dimensionality

2013 ◽  
Vol 63 ◽  
pp. 99-112 ◽  
Author(s):  
Heng Lian ◽  
Jianbo Li ◽  
Yuao Hu
1999 ◽  
Vol 27 (4) ◽  
pp. 701-717 ◽  
Author(s):  
Joseph G. Ibrahim ◽  
Ming-Hui Chen ◽  
Steven N. MacEachern

2020 ◽  
Author(s):  
Emily Goren ◽  
Chong Wang ◽  
Zhulin He ◽  
Amy M Sheflin ◽  
Dawn Chiniquy ◽  
...  

AbstractBackgroundMicrobiome studies have uncovered associations between microbes and human, animal, and plant health outcomes. This has led to an interest in developing microbial interventions for treatment of disease and optimization of crop yields which requires identification of microbiome features that impact the outcome in the population of interest. That task is challenging because of the high dimensionality of microbiome data and the confounding that results from the complex and dynamic interactions among host, environment, and microbiome. In the presence of such confounding, variable selection and estimation procedures may have unsatisfactory performance in identifying microbial features with an effect on the outcome.ResultsIn this manuscript, we aim to estimate population-level effects of individual microbiome features while controlling for confounding by a categorical variable. Due to the high dimensionality and confounding-induced correlation between features, we propose feature screening, selection, and estimation conditional on each stratum of the confounder followed by a standardization approach to estimation of population-level effects of individual features.Comprehensive simulation studies demonstrate the advantages of our approach in recovering relevant features. Utilizing a potential-outcomes framework, we outline assumptions required to ascribe causal, rather than associational, interpretations to the identified microbiome effects. We conducted an agricultural study of the rhizosphere microbiome of sorghum in which nitrogen fertilizer application is a confounding variable. In this study, the proposed approach identified microbial taxa that are consistent with biological understanding of potential plant-microbe interactions.ConclusionsStandardization enables more accurate identification of individual microbiome features with an effect on the outcome of interest compared to other variable selection and estimation procedures when there is confounding by a categorical variable.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Emily Goren ◽  
Chong Wang ◽  
Zhulin He ◽  
Amy M. Sheflin ◽  
Dawn Chiniquy ◽  
...  

Abstract Background Microbiome studies have uncovered associations between microbes and human, animal, and plant health outcomes. This has led to an interest in developing microbial interventions for treatment of disease and optimization of crop yields which requires identification of microbiome features that impact the outcome in the population of interest. That task is challenging because of the high dimensionality of microbiome data and the confounding that results from the complex and dynamic interactions among host, environment, and microbiome. In the presence of such confounding, variable selection and estimation procedures may have unsatisfactory performance in identifying microbial features with an effect on the outcome. Results In this manuscript, we aim to estimate population-level effects of individual microbiome features while controlling for confounding by a categorical variable. Due to the high dimensionality and confounding-induced correlation between features, we propose feature screening, selection, and estimation conditional on each stratum of the confounder followed by a standardization approach to estimation of population-level effects of individual features. Comprehensive simulation studies demonstrate the advantages of our approach in recovering relevant features. Utilizing a potential-outcomes framework, we outline assumptions required to ascribe causal, rather than associational, interpretations to the identified microbiome effects. We conducted an agricultural study of the rhizosphere microbiome of sorghum in which nitrogen fertilizer application is a confounding variable. In this study, the proposed approach identified microbial taxa that are consistent with biological understanding of potential plant-microbe interactions. Conclusions Standardization enables more accurate identification of individual microbiome features with an effect on the outcome of interest compared to other variable selection and estimation procedures when there is confounding by a categorical variable.


2021 ◽  
pp. 096228022110092
Author(s):  
Mingyue Du ◽  
Hui Zhao ◽  
Jianguo Sun

Cox’s proportional hazards model is the most commonly used model for regression analysis of failure time data and some methods have been developed for its variable selection under different situations. In this paper, we consider a general type of failure time data, case K interval-censored data, that include all of other types discussed as special cases, and propose a unified penalized variable selection procedure. In addition to its generality, another significant feature of the proposed approach is that unlike all of the existing variable selection methods for failure time data, the proposed approach allows dependent censoring, which can occur quite often and could lead to biased or misleading conclusions if not taken into account. For the implementation, a coordinate descent algorithm is developed and the oracle property of the proposed method is established. The numerical studies indicate that the proposed approach works well for practical situations and it is applied to a set of real data arising from Alzheimer’s Disease Neuroimaging Initiative study that motivated this study.


Sign in / Sign up

Export Citation Format

Share Document