Effect of benthic-pelagic coupling on dissolved organic carbon concentrations in permeable sediments and water column in the northeastern Gulf of Mexico

2012 ◽  
Vol 45 ◽  
pp. 116-125 ◽  
Author(s):  
Lindsay Chipman ◽  
Markus Huettel ◽  
Matthias Laschet
1990 ◽  
Vol 24 (1) ◽  
pp. 35-42 ◽  
Author(s):  
T. E. FORD ◽  
S. A. FORD ◽  
M. A. LOCK ◽  
R. J. NAIMAN

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5984 ◽  
Author(s):  
Nataly Carolina Guevara Campoverde ◽  
Christiane Hassenrück ◽  
Pier Luigi Buttigieg ◽  
Astrid Gärdes

Bacteria play a crucial role in the marine carbon cycle, contributing to the production and degradation of organic carbon. Here, we investigated organic carbon pools, aggregate formation, and bacterioplankton communities in three contrasting oceanographic settings in the Galapagos Archipelago. We studied a submarine CO2 vent at Roca Redonda (RoR), an upwelling site at Bolivar Channel (BoC) subjected to a weak El Niño event at the time of sampling in October 2014, as well as a site without volcanic or upwelling influence at Cowley Islet (CoI). We recorded physico-chemical parameters, and quantified particulate and dissolved organic carbon, transparent exopolymeric particles, and the potential of the water to form larger marine aggregates. Free-living and particle-attached bacterial communities were assessed via 16S rRNA gene sequencing. Both RoR and BoC exhibited temperatures elevated by 1–1.5 °C compared to CoI. RoR further experienced reduced pH between 6.8 and 7.4. We observed pronounced differences in organic carbon pools at each of the three sites, with highest dissolved organic carbon concentrations at BoC and RoR, and highest particulate organic carbon concentrations and aggregate formation at BoC. Bacterioplankton communities at BoC were dominated by opportunistic copiotrophic taxa, such as Alteromonas and Roseobacter, known to thrive in phytoplankton blooms, as opposed to oligotrophic taxa dominating at CoI, such as members of the SAR11 clade. Therefore, we propose that bacterial communities were mainly influenced by the availability of organic carbon at the investigated sites. Our study provides a comprehensive characterization of organic carbon pools and bacterioplankton communities, highlighting the high heterogeneity of various components of the marine carbon cycle around the Galapagos Archipelago.


2021 ◽  
Vol 1 ◽  
pp. 43
Author(s):  
Paul Strubinger Sandoval ◽  
Giorgio Dall'Olmo ◽  
Keith Haines ◽  
Rafael Rasse ◽  
Jelizaveta Ross

Measurements of particulate organic carbon (POC) in the open ocean provide grounds for estimating oceanic carbon budgets and for modelling carbon cycling. The majority of the published POC measurements have been collected at the sea surface. Thus, POC stocks in the upper layer of the water column are relatively well constrained. However, our understanding of the POC distribution and its dynamics in deeper areas is modest due to insufficient in POC measurements. Moreover, the accuracy of published POC estimates is not always quantified, and neither is it fully understood. In this study, we determined the POC concentrations of samples collected in the upper 500 m during an Atlantic Meridional Transect and described a method for quantifying its experimental uncertainties using duplicate measurements. The analysis revealed that the medians of the total experimental uncertainties associated with our POC concentrations in the productive and mesopelagic zones were 2.5(±1.2) mg/m3 and 2.6(±0.6) mg/m3, respectively. In relative terms, these uncertainties corresponded to ~14% and ~ 35% of POC concentrations, respectively. However, despite our best efforts, we could explain only ~ 21% of the total experimental POC uncertainty. The potential sources of this unexplained portion of uncertainty are discussed.


2015 ◽  
Vol 104 ◽  
pp. 104-119 ◽  
Author(s):  
Michael Santema ◽  
Allan J. Clarke ◽  
Kevin Speer, ◽  
Markus Huettel

Sign in / Sign up

Export Citation Format

Share Document