scholarly journals Causal Role of Dorsolateral Prefrontal Cortex in Human Perceptual Decision Making

2011 ◽  
Vol 21 (11) ◽  
pp. 980-983 ◽  
Author(s):  
Marios G. Philiastides ◽  
Ryszard Auksztulewicz ◽  
Hauke R. Heekeren ◽  
Felix Blankenburg
2020 ◽  
Vol 31 (1) ◽  
pp. 184-200
Author(s):  
Stefan Schulreich ◽  
Lars Schwabe

Abstract Adaptive performance in uncertain environments depends on the ability to continuously update internal beliefs about environmental states. Recent correlative evidence suggests that a frontoparietal network including the dorsolateral prefrontal cortex (dlPFC) supports belief updating under uncertainty, but whether the dlPFC serves a “causal” role in this process is currently not clear. To elucidate its contribution, we leveraged transcranial direct current stimulation (tDCS) over the right dlPFC, while 91 participants performed an incentivized belief-updating task. Participants also underwent a psychosocial stress or control manipulation to investigate the role of stress, which is known to modulate dlPFC functioning. We observed enhanced monetary value updating after anodal tDCS when it was normatively expected from a Bayesian perspective. A model-based analysis indicates that this effect was driven by belief updating. However, we also observed enhanced non-normative value updating, which might have been driven instead by expectancy violation. Enhanced normative and non-normative value updating reflected increased vs. decreased Bayesian rationality, respectively. Furthermore, cortisol increases were associated with enhanced positive, but not with negative, value updating. The present study thereby sheds light on the causal role of the right dlPFC in the remarkable human ability to navigate uncertain environments by continuously updating prior knowledge following new evidence.


2016 ◽  
Author(s):  
James J Bonaiuto ◽  
Archy de Berker ◽  
Sven Bestmann

The left dorsolateral prefrontal cortex (dlPFC) has been linked to the accumulation and comparison of perceptual evidence for decision making independent of sensory and response modalities. We investigated the possible neural dynamics underlying the role of dlPFC in perceptual decision making, through a combination of noninvasive neurostimulation in humans and computational modeling. First, we used an established and biophysically realistic model of a decision making network that employs competition between neural populations. Simulation of depolarizing noninvasive brain stimulation in this model decreased decision time, while hyperpolarizing stimulation increased it. This behavioral effect was caused by an increase in the rate of neural activity integration via recurrent connections, as well as changes in the susceptibility of the network to noisy background inputs which modulated population firing rate differences prior to the onset of the stimulus. These pre-stimulus differences biased the response to one or the other option, thus speeding or slowing decisions. We then tested these model predictions in healthy participants performing a perceptual decision making task while receiving transcranial direct current stimulation (tDCS) over the left dlPFC, analogous to our simulated network stimulation. We found a striking match between model predictions and experimental results: depolarizing (inward) currents reduced and hyperpolarizing (outward) currents increased response times, but accuracy remained unaffected. Our results provide interventional evidence for the role of left dlPFC in perceptual decision making, and suggest that this region integrates and compares sensory evidence through competitive interactions between pyramidal cell populations which are selective for each response option. Mechanistically, our model suggests that stimulation of this region changes the rate at which evidence can be accumulated through recurrent activity and its susceptibility to background noise. More generally, our approach demonstrates that a linkage between computational modeling and noninvasive brain stimulation allows mechanistic accounts of brain function to be causally tested.


2021 ◽  
Author(s):  
Xue Xia ◽  
Yansong Li ◽  
Yanqiu Wang ◽  
Jing Xia ◽  
Yitong Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document