scholarly journals Stretch reflexes

2020 ◽  
Vol 30 (18) ◽  
pp. R1025-R1030 ◽  
Author(s):  
Sasha Reschechtko ◽  
J. Andrew Pruszynski
Keyword(s):  
2019 ◽  
Vol 22 (4) ◽  
pp. 529-533 ◽  
Author(s):  
Jeffrey Weiler ◽  
Paul L. Gribble ◽  
J. Andrew Pruszynski

Motor Control ◽  
2015 ◽  
Vol 19 (4) ◽  
pp. 253-270 ◽  
Author(s):  
Asger Roer Pedersen ◽  
Peter William Stubbs ◽  
Jørgen Feldbæk Nielsen

The aim was to investigate trial-by-trial response characteristics in the short-latency stretch reflex (SSR). Fourteen dorsiflexion stretches were applied to the ankle joint with a precontracted soleus muscle on 2 days. The magnitude and variability of trial-by-trial responses of the SSR were assessed. The SSR was log-normally distributed and variance heterogeneous between subjects. For some subjects, the magnitude and variance differed between days and stretches. As velocity increased, variance heterogeneity tended to decrease and response magnitude increased. The current study demonstrates the need to assess trial-by-trial response characteristics and not averaged curves. Moreover, it provides an analysis of SSR characteristics accounting for log-normally distributed and variance heterogeneous trial-by-trial responses.


2008 ◽  
Vol 100 (6) ◽  
pp. 3236-3243 ◽  
Author(s):  
Jacob G. McPherson ◽  
Michael D. Ellis ◽  
C. J. Heckman ◽  
Julius P. A. Dewald

Despite the prevalence of hyperactive stretch reflexes in the paretic limbs of individuals with chronic hemiparetic stroke, the fundamental pathophysiological mechanisms responsible for their expression remain poorly understood. This study tests whether the manifestation of hyperactive stretch reflexes following stroke is related to the development of persistent inward currents (PICs) leading to hyperexcitability of motoneurons innervating the paretic limbs. Because repetitive volleys of 1a afferent feedback can elicit PICs, this investigation assessed motoneuronal excitability by evoking the tonic vibration reflex (TVR) of the biceps muscle in 10 awake individuals with chronic hemiparetic stroke and measuring the joint torque and electromyographic (EMG) responses of the upper limbs. Elbow joint torque and the EMG activity of biceps, brachioradialis, and the long and lateral heads of triceps brachii were recorded during 8 s of 112-Hz biceps vibration (evoking the TVR) and for 5 s after cessation of stimulation. Repeated-measures ANOVA tests revealed significantly ( P ≤ 0.05) greater increases in elbow flexion torque and EMG activity in the paretic as compared with the nonparetic limbs, both during and up to 5 s following biceps vibration. The finding of these augmentations exclusively in the paretic limb suggests that contralesional motoneurons may become hyperexcitable and readily invoke PICs following stroke. An enhanced tendency to evoke PICs may be due to an increased subthreshold depolarization of motoneurons, an increased monoaminergic input from the brain stem, or both.


2004 ◽  
Vol 159 (2) ◽  
pp. 206-213 ◽  
Author(s):  
I. D. Beith ◽  
P. J. Harrison

1995 ◽  
pp. 151-158 ◽  
Author(s):  
R. B. Stein ◽  
S. J. Deserres ◽  
R. E. Kearney
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document