Statistical Considerations When Assessing Short Latency Stretch Reflexes in the Human Soleus Muscle

Motor Control ◽  
2015 ◽  
Vol 19 (4) ◽  
pp. 253-270 ◽  
Author(s):  
Asger Roer Pedersen ◽  
Peter William Stubbs ◽  
Jørgen Feldbæk Nielsen

The aim was to investigate trial-by-trial response characteristics in the short-latency stretch reflex (SSR). Fourteen dorsiflexion stretches were applied to the ankle joint with a precontracted soleus muscle on 2 days. The magnitude and variability of trial-by-trial responses of the SSR were assessed. The SSR was log-normally distributed and variance heterogeneous between subjects. For some subjects, the magnitude and variance differed between days and stretches. As velocity increased, variance heterogeneity tended to decrease and response magnitude increased. The current study demonstrates the need to assess trial-by-trial response characteristics and not averaged curves. Moreover, it provides an analysis of SSR characteristics accounting for log-normally distributed and variance heterogeneous trial-by-trial responses.

2008 ◽  
Vol 105 (1) ◽  
pp. 226-232 ◽  
Author(s):  
Neil J. Cronin ◽  
Jussi Peltonen ◽  
Masaki Ishikawa ◽  
Paavo V. Komi ◽  
Janne Avela ◽  
...  

The aims of this study were to examine changes in the distribution of a stretch to the muscle fascicles with changes in contraction intensity in the human triceps surae and to relate fascicle stretch responses to short-latency stretch reflex behavior. Thirteen healthy subjects were seated in an ankle ergometer, and dorsiflexion stretches (8°; 250°/s) were applied to the triceps surae at different moment levels (0–100% of maximal voluntary contraction). Surface EMG was recorded in the medial gastrocnemius, soleus, and tibialis anterior muscles, and ultrasound was used to measure medial gastrocnemius and soleus fascicle lengths. At low forces, reflex amplitudes increased despite a lack of change or even a decrease in fascicle stretch velocities. At high forces, lower fascicle stretch velocities coincided with smaller stretch reflexes. The results revealed a decline in fascicle stretch velocity of over 50% between passive conditions and maximal force levels in the major muscles of the triceps surae. This is likely to be an important factor related to the decline in stretch reflex amplitudes at high forces. Because short-latency stretch reflexes contribute to force production and stiffness regulation of human muscle fibers, a reduction in afferent feedback from muscle spindles could decrease the efficacy of human movements involving the triceps surae, particularly where high force production is required.


2005 ◽  
Vol 98 (4) ◽  
pp. 1366-1370 ◽  
Author(s):  
Nis Hjortskov ◽  
Jørgen Skotte ◽  
Christian Hye-Knudsen ◽  
Nils Fallentin

Animal experiments suggest that an increase in sympathetic outflow can depress muscle spindle sensitivity and thus modulate the stretch reflex response. The results are, however, controversial, and human studies have failed to demonstrate a direct influence of the sympathetic nervous system on the sensitivity of muscle spindles. We studied the effect of increased sympathetic outflow on the short-latency stretch reflex in the soleus muscle evoked by tapping the Achilles tendon. Nine subjects performed three maneuvers causing a sustained activation of sympathetic outflow to the leg: 3 min of static handgrip exercise at 30% of maximal voluntary contraction, followed by 3 min of posthandgrip ischemia, and finally during a 3-min mental arithmetic task. Electromyography was measured from the soleus muscle with bipolar surface electrodes during the Achilles tendon tapping, and beat-to-beat changes in heart rate and mean arterial blood pressure were monitored continuously. Mean arterial pressure was significantly elevated during all three maneuvers, whereas heart rate was significantly elevated during static handgrip exercise and mental arithmetic but not during posthandgrip ischemia. The peak-to-peak amplitude of the short-latency stretch reflex was significantly increased during mental arithmetic ( P < 0.05), static handgrip exercise ( P < 0.001), and posthandgrip ischemia ( P < 0.005). When expressed in percent change from rest, the mean peak-to-peak amplitude increased by 111 (SD 100)% during mental arithmetic, by 160 (SD 103)% during static handgrip exercise, and by 90 (SD 67)% during posthandgrip ischemia. The study clearly indicates a facilitation of the short-latency stretch reflex during increased sympathetic outflow. We note that the enhanced stretch reflex responses observed in relaxed muscles in the absence of skeletomotor activity support the idea that the sympathetic nervous system can exert a direct influence on the human muscle spindles.


1996 ◽  
Vol 76 (2) ◽  
pp. 1112-1120 ◽  
Author(s):  
T. Sinkjaer ◽  
J. B. Andersen ◽  
B. Larsen

1. The modulation of the short-latency stretch reflex during walking at different walking speeds was investigated and compared with the stretch reflex during standing in healthy human subjects. 2. Ankle joint stretches were applied by a system able to rotate the human ankle joint during treadmill walking in any phase of the step cycle. The system consisted of a mechanical joint attached to the subject's ankle joint and connected to a motor placed beside the treadmill by means of bowden wires. The weight of the total system attached to the leg of the subject was 900 g. 3. The short-latency soleus stretch reflex was modulated during a step. In the stance phase, the amplitude equaled that found during standing at matched soleus background electromyogram (EMG). In the transition from stance to swing, the amplitude was 0 in all subjects. In late swing, the stretch reflex amplitude increased to 45 +/- 27% (mean +/- SD) of the maximal amplitude in the stance phase (stretch amplitude 8 degrees, stretch velocity 250 degrees/s). 4. The onset (42 +/- 3.2 ms) and peak latencies (59 +/- 2.5 ms) of the stretch reflex did not depend on the phase in the step cycle at which the reflex was elicited. 5. When the ankle joint is rotated, a change in torque can be measured. The torque measured over the first 35 ms after stretch onset (nonreflex torque) was at a maximum during late stance, when the leg supported a large part of the body's weight, and at a minimum during the swing phase. At heel contact the nonreflex torque was 50% of its maximal value. 6. During the stance phase the maximal EMG stretch reflex had a phase lead of approximately 120 ms with respect to the maximal background EMG and a phase lead of approximately 250 ms with respect to the maximal nonreflex torque. 7. The constant latency of the stretch reflex during a step implied that the ankle extensor muscle spindles are always taut during walking. 8. The relatively high amplitude of the stretch reflex in late swing and at heel contact made it likely that the stretch reflex contributed to the activation of the ankle extensor muscles in early stance phase.


2004 ◽  
Vol 10 (5) ◽  
pp. 521-525 ◽  
Author(s):  
J F Nielsen ◽  
T Sinkjær

We tested the hypothesis that changes in soleus stretch reflex was correlated to changes in intrathecal baclofen dose in 12 multiple sclerosis patients with moderate-severe spasticity treated with intrathecal baclofen pump. Twice patients were evaluated clinically and biomechanically. The short-latency soleus stretch reflex was elicited by rotating the ankle joint 48 with a velocity from 3.1 to 1808/s. There was a strong correlation between changes in intrathecal baclofen dose and amplitude of the short-latency stretch reflex (r=- 0.88, PB < 0.001), which means that with an increase in baclofen dose there is a decrease in the amplitude. In contrast, no correlation exists between changes in intrathecal baclofen dose and clinical assessment of spasticity by using the Ashworth scale. The amplitude of the stretch reflex was very small (5 mV) compared with previous findings (> 50 μV), which indicates an effective antispastic effect of intrathecal baclofen. We suggest that clinical evaluation of spasticity using Ashworth scale is insensitive to detect minor changes in moderate-severe spasticity and consequently might not be very useful in evaluating spasticity in relation to ambulatory filling of baclofen pumps. The soleus stretch reflex might be useful in situations when there is doubt about the effect of intrathecally administered baclofen.


2008 ◽  
Vol 105 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Tetsuya Ogawa ◽  
Gee Hee Kim ◽  
Hirofumi Sekiguchi ◽  
Masami Akai ◽  
Shuji Suzuki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document