persistent inward currents
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 19)

H-INDEX

23
(FIVE YEARS 3)

Author(s):  
Alexander M. Zero ◽  
Eric A. Kirk ◽  
Charles L. Rice

During activity-dependent potentiation (ADP) motor unit firing rates (MUFRs) are lower, however, the mechanism for this response is not known. During increasing torque isometric contractions at low contraction intensities, MUFR trajectories initially accelerate and saturate demonstrating a non-linear response due to the activation of persistent inward currents (PICs) at the motoneuron. The purpose was to assess whether PICs are a factor in the reduction of MUFRs during ADP. To assess this, MUFR trajectories were fit with competing functions of linear regression and a rising exponential (i.e., acceleration and saturation). Using fine-wire electrodes, discrete MU potential trains were recorded in the tibialis anterior during slowly increasing dorsiflexion contractions to 10% of maximal voluntary contraction following both voluntary (post-activation potentiation; PAP) and evoked (post-tetanic potentiation; PTP) contractions. In 8 participants, 25 MUs were recorded across both ADP conditions and compared to the control with no ADP effect. During PAP and PTP, the average MUFRs were 16.4% and 9.2% lower (both P≤ 0.001), respectively. More MUFR trajectories were better fit to the rising exponential during control (16/25) compared to PAP (4/25, P<0.001) and PTP (8/25, P=0.03). The MU samples that had a rising exponential MUFR trajectory during PAP and PTP displayed an ~11% lower initial acceleration compared to control (P<0.05). Thus, synaptic amplification and MUFR saturation due to PIC properties are attenuated during ADP regardless of the type of conditioning contraction. This response may contribute to lower MUFRs and likely occurred because synaptic input is reduced when contractile function is enhanced.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Simon A Sharples ◽  
Gareth B Miles

The size principle underlies the orderly recruitment of motor units; however, motoneuron size is a poor predictor of recruitment amongst functionally defined motoneuron subtypes. Whilst intrinsic properties are key regulators of motoneuron recruitment, the underlying currents involved are not well defined. Whole-cell patch-clamp electrophysiology was deployed to study intrinsic properties, and the underlying currents, that contribute to the differential activation of delayed and immediate firing motoneuron subtypes. Motoneurons were studied during the first three postnatal weeks in mice to identify key properties that contribute to rheobase and may be important to establish orderly recruitment. We find that delayed and immediate firing motoneurons are functionally homogeneous during the first postnatal week and are activated based on size, irrespective of subtype. The rheobase of motoneuron subtypes become staggered during the second postnatal week, which coincides with the differential maturation of passive and active properties, particularly persistent inward currents. Rheobase of delayed firing motoneurons increases further in the third postnatal week due to the development of a prominent resting hyperpolarization-activated inward current. Our results suggest that motoneuron recruitment is multifactorial, with recruitment order established during postnatal development through the differential maturation of passive properties and sequential integration of persistent and hyperpolarization-activated inward currents.


2021 ◽  
Author(s):  
Altamash S Hassan ◽  
Melissa E Fajardo ◽  
Mark Cummings ◽  
Laura Miller McPherson ◽  
Francesco Negro ◽  
...  

2021 ◽  
Author(s):  
Altamash S Hassan ◽  
Melissa E Fajardo ◽  
Mark Cummings ◽  
Laura Miller McPherson ◽  
Francesco Negro ◽  
...  

Aging is a natural process that causes alterations in the neuromuscular system, which contribute to weakness and reduced quality of life. Reduced firing rates of individual motor units (MUs) likely contribute to weakness, but the mechanisms underlying reduced firing rates are not clear. Persistent inward currents (PICs) are crucial for the initiation, gain control, and maintenance of motoneuron firing, and are directly proportional to the level of monoaminergic input. Since the concentration of monoamines (i.e. serotonin and norepinephrine) are reduced with age, we sought to determine if estimates of PICs are reduced in older (>60 years old) compared to young adults (<35 years old). We decomposed MU spike trains from high-density surface electromyography over the biceps brachii and triceps brachii during isometric ramp contractions to 20% of maximum. Estimates of PICs (i.e. ΔF) were computed using the paired MU analysis technique. Regardless of the muscle, peak firing rates of older adults were reduced by ~1.6 pulses per second (pps) (P = 0.0292), and ΔF was reduced by ~1.9 pps (P < 0.0001), compared to young adults. We further found that age predicted ΔF in older adults (P = 0.0261), resulting in a reduction of ~1pps per decade, but there was no relationship in young adults (P = 0.9637). These findings suggest that PICs are reduced in older adults, and, further, age is a significant predictor of estimates of PICs in older adults. Reduced PIC magnitude represents one plausible mechanism for reduced firing rates and weakness in older individuals.


Author(s):  
Obaid U Khurram ◽  
Francesco Negro ◽  
CJ Heckman ◽  
Christopher K. Thompson

Persistent inward currents (PICs) play an essential role in setting motor neuron gain and shaping motor unit firing patterns. Estimates of PICs in humans can be made using the paired motor unit analysis technique, which quantifies the difference in discharge rate of a lower-threshold motor unit at the recruitment onset and offset of a higher-threshold motor unit (∆F). Because PICs are highly dependent on the level of neuromodulatory drive, ∆F represents an estimate of level of neuromodulation at the level of the spinal cord. Most of the estimates of ∆F are performed under constrained, isometric, seated conditions. In the present study, we used high-density surface EMG arrays to discriminate motor unit firing patterns during isometric seated conditions with torque or EMG visual feedback and during unconstrained standing anterior-to-posterior movements with RMS EMG visual feedback. We were able to apply the paired motor unit analysis technique to the decomposed motor units in each of the three conditions. We hypothesized that ∆F would be higher during unconstrained standing anterior-to-posterior movements compared to the seated conditions, reflecting an increase in the synaptic input to MNs drive while standing. In agreement with previous work, we found that there was no evidence of a difference in ∆F between the seated and standing postures, although slight differences in the initial and peak discharge rates were observed. Taken together, our results suggest that both the standing and seated postures are likely not sufficiently different--both being "upright" postures--to result in large changes in neuromodulatory drive.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yi Cheng ◽  
Nan Song ◽  
Renkai Ge ◽  
Yue Dai

Serotonergic (5-HT) neurons in the medulla play multiple functional roles associated with many symptoms and motor activities. The descending serotonergic pathway from medulla is essential for initiating locomotion. However, the ionic properties of 5-HT neurons in the medulla remain unclear. Using whole-cell patch-clamp technique, we studied the biophysical and modulatory properties of persistent inward currents (PICs) in 5-HT neurons of medulla in ePet-EYFP transgenic mice (P3–P6). PICs were recorded by a family of voltage bi-ramps (10-s duration, 40-mV peak step), and the ascending and descending PICs were mirrored to analyze the PIC hysteresis. PICs were found in 77% of 5-HT neurons (198/258) with no significant difference between parapyramidal region (n = 107) and midline raphe nuclei (MRN) (n = 91) in either PIC onset (−47.4 ± 10 mV and −48.7 ± 7 mV; P = 0.44) or PIC amplitude (226.9 ± 138 pA and 259.2 ± 141 pA; P = 0.29). Ninety-six percentage (191/198) of the 5-HT neurons displayed counterclockwise hysteresis and four percentage (7/198) exhibited the clockwise hysteresis. The composite PICs could be differentiated as calcium component (Ca_PIC) by bath application of nimodipine (25 μM), sodium component (Na_PIC) by tetrodotoxin (TTX, 2 μM), and TTX- and dihydropyridine-resistance component (TDR_PIC) by TTX and nimodipine. Ca_PIC, Na_PIC and TDR_PIC all contributed to upregulation of excitability of 5-HT neurons. 5-HT (15 μM) enhanced the PICs, including a 26% increase in amplitude of the compound currents of Ca_PIC and TDR_PIC (P &lt; 0.001, n = 9), 3.6 ± 5 mV hyperpolarization of Na_PIC and TDR_PIC onset (P &lt; 0.05, n = 12), 30% increase in amplitude of TDR_PIC (P &lt; 0.01), and 2.0 ± 3 mV hyperpolarization of TDR_PIC onset (P &lt; 0.05, n = 18). 5-HT also facilitated repetitive firing of 5-HT neurons through modulation of composite PIC, Na_PIC and TDR_PIC, and Ca_PIC and TDR_PIC, respectively. In particular, the high voltage-activated TDR_PIC facilitated the repetitive firing in higher membrane potential, and this facilitation could be amplified by 5-HT. Morphological data analysis indicated that the dendrites of 5-HT neurons possessed dense spherical varicosities intensively crossing 5-HT neurons in medulla. We characterized the PICs in 5-HT neurons and unveiled the mechanism underlying upregulation of excitability of 5-HT neurons through serotonergic modulation of PICs. This study provided insight into channel mechanisms responsible for the serotonergic modulation of serotonergic neurons in brainstem.


Author(s):  
Lucas B R Orssatto ◽  
Karen Mackay ◽  
Anthony James Shield ◽  
Raphael Luiz Sakugawa ◽  
Anthony John Blazevich ◽  
...  

This study tested if estimates of persistent inward currents (PICs) in the plantar flexors would increase with the level of voluntary drive. High-density surface electromyograms were collected from soleus and gastrocnemius medialis of 21 participants during ramp-shaped isometric contractions to 10%, 20%, and 30% (torque rise and decline of 2%/s and 30-s duration) of each participant's maximal torque. Motor units identified in all the contraction intensities were included in the paired-motor unit analysis to calculate delta frequency (ΔF) and estimate the PICs. ΔF is the difference in discharge rate of the control unit at the time of recruitment and de-recruitment of the test unit. Increases in PICs were observed from 10% to 20% (Δ=0.6 pulse-per-second, pps; p<0.001) and 20% to 30% (Δ=0.5pps; p<0.001) in soleus, and from 10% to 20% (Δ=1.2pps; p<0.001) but not 20% to 30% (Δ=0.09pps; p=0.724) in gastrocnemius medialis. Maximal discharge rate increased for soleus and gastrocnemius medialis from 10% to 20% (respectively, Δ=1.75pps, p<0.001; and Δ=2.43pps, p<0.001) and 20% to 30% (respectively, Δ=0.80pps, p<0.017; and Δ=0.92pps, p=002). The repeated-measures correlation identified associations between ΔF and increases in maximal discharge rate for soleus (r=0.64; p<0.001) and gastrocnemius medialis (r=0.77; p<0.001). An increase in voluntary drive tends to increase PIC strength, which has key implications for the control of force but also for comparisons between muscles or studies when relative force levels are different. Increases in voluntary descending drive amplify PICs in humans and provide an important spinal mechanism for motor unit discharging, and thus force output modulation.


2020 ◽  
Author(s):  
Lucas B. R Orssatto ◽  
Karen Mackay ◽  
Anthony J Shield ◽  
Raphael L. Sakugawa ◽  
Anthony J. Blazevich ◽  
...  

This study tested the hypothesis that estimates of persistent inward currents (PICs) in the human plantar flexors would increase with the level of voluntary drive. Twenty-one participants volunteered for this study (29.2±2.6 years). High-density surface electromyograms were collected from soleus and gastrocnemius medialis during ramp-shaped isometric contractions to 10%, 20%, and 30% (torque rise of 2%/s and 30-s duration) of each participant's maximal torque. Motor units identified in all the contraction intensities were included in the paired-motor unit analysis to calculate delta frequency (ΔF) and estimate the PICs. Increases in PICs were observed from 10% to 20% (Δ=0.6 pps; p<0.001) and 20% to 30% (Δ=0.5 pps; p<0.001) in soleus, and from 10% to 20% (Δ=1.2 pps; p<0.001) but not 20% to 30% (Δ=0.09 pps; p=0.724) in gastrocnemius medialis. Maximal discharge rate increased for soleus and gastrocnemius medialis from 10% to 20% (respectively, Δ=1.75 pps, p<0.001; and Δ=2.43 pps, p<0.001) and 20% to 30% (respectively, Δ=0.80 pps, p<0.017; and Δ=0.92 pps, p=002). The repeated-measures correlation identified associations between ΔF and increases in maximal discharge rate for both soleus (r=0.64; p<0.001) and gastrocnemius medialis (r=0.77; p<0.001). An increase in voluntary drive tends to increase PIC strength, which has key implications for the control of force but also for comparisons between muscles or between studies when relative force levels might be different. These data indicate that increases in voluntary descending drive amplify PICs in humans and provide an important spinal mechanism for motor unit firing, and thus force output modulation.


Sign in / Sign up

Export Citation Format

Share Document