Color image histogram equalization by absolute discounting back-off

2007 ◽  
Vol 107 (1-2) ◽  
pp. 108-122 ◽  
Author(s):  
Nikoletta Bassiou ◽  
Constantine Kotropoulos
Author(s):  
Ashish Dwivedi ◽  
Nirupma Tiwari

Image enhancement (IE) is very important in the field where visual appearance of an image is the main. Image enhancement is the process of improving the image in such a way that the resulting or output image is more suitable than the original image for specific task. With the help of image enhancement process the quality of image can be improved to get good quality images so that they can be clear for human perception or for the further analysis done by machines.Image enhancement method enhances the quality, visual appearance, improves clarity of images, removes blurring and noise, increases contrast and reveals details. The aim of this paper is to study and determine limitations of the existing IE techniques. This paper will provide an overview of different IE techniques commonly used. We Applied DWT on original RGB image then we applied FHE (Fuzzy Histogram Equalization) after DWT we have done the wavelet shrinkage on Three bands (LH, HL, HH). After that we fuse the shrinkage image and FHE image together and we get the enhance image.


Author(s):  
Ashraf Osman Ibrahim ◽  
◽  
Ali Ahmed ◽  
Anik Hanifatul Azizah ◽  
Saima Anwar Lashar ◽  
...  

2021 ◽  
Vol 7 (8) ◽  
pp. 150
Author(s):  
Kohei Inoue ◽  
Minyao Jiang ◽  
Kenji Hara

This paper proposes a method for improving saturation in the context of hue-preserving color image enhancement. The proposed method handles colors in an RGB color space, which has the form of a cube, and enhances the contrast of a given image by histogram manipulation, such as histogram equalization and histogram specification, of the intensity image. Then, the color corresponding to a target intensity is determined in a hue-preserving manner, where a gamut problem should be taken into account. We first project any color onto a surface in the RGB color space, which bisects the RGB color cube, to increase the saturation without a gamut problem. Then, we adjust the intensity of the saturation-enhanced color to the target intensity given by the histogram manipulation. The experimental results demonstrate that the proposed method achieves higher saturation than that given by related methods for hue-preserving color image enhancement.


In many image processing applications, a wide range of image enhancement techniques are being proposed. Many of these techniques demanda lot of critical and advance steps, but the resultingimage perception is not satisfactory. This paper proposes a novel sharpening method which is being experimented with additional steps. In the first step, the color image is transformed into grayscale image, then edge detection process is applied using Laplacian technique. Then deduct this image from the original image. The resulting image is as expected; After performing the enhancement process,the high quality of the image can be indicated using the Tenengrad criterion. The resulting image manifested the difference in certain areas, the dimension and the depth as well. Histogram equalization technique can also be applied to change the images color.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Li Zhou ◽  
Du Yan Bi ◽  
Lin Yuan He

Foggy images taken in the bad weather inevitably suffer from contrast loss and color distortion. Existing defogging methods merely resort to digging out an accurate scene transmission in ignorance of their unpleasing distortion and high complexity. Different from previous works, we propose a simple but powerful method based on histogram equalization and the physical degradation model. By revising two constraints in a variational histogram equalization framework, the intensity component of a fog-free image can be estimated in HSI color space, since the airlight is inferred through a color attenuation prior in advance. To cut down the time consumption, a general variation filter is proposed to obtain a numerical solution from the revised framework. After getting the estimated intensity component, it is easy to infer the saturation component from the physical degradation model in saturation channel. Accordingly, the fog-free image can be restored with the estimated intensity and saturation components. In the end, the proposed method is tested on several foggy images and assessed by two no-reference indexes. Experimental results reveal that our method is relatively superior to three groups of relevant and state-of-the-art defogging methods.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4654
Author(s):  
Piotr Łabędź ◽  
Krzysztof Skabek ◽  
Paweł Ozimek ◽  
Mateusz Nytko

The accuracy of photogrammetric reconstruction depends largely on the acquisition conditions and on the quality of input photographs. This paper proposes methods of improving raster images that increase photogrammetric reconstruction accuracy. These methods are based on modifying color image histograms. Special emphasis was placed on the selection of channels of the RGB and CIE L*a*b* color models for further improvement of the reconstruction process. A methodology was proposed for assessing the quality of reconstruction based on premade reference models using positional statistics. The analysis of the influence of image enhancement on reconstruction was carried out for various types of objects. The proposed methods can significantly improve the quality of reconstruction. The superiority of methods based on the luminance channel of the L*a*b* model was demonstrated. Our studies indicated high efficiency of the histogram equalization method (HE), although these results were not highly distinctive for all performed tests.


Sign in / Sign up

Export Citation Format

Share Document