scholarly journals Vertex connectivity of the power graph of a finite cyclic group

2019 ◽  
Vol 266 ◽  
pp. 259-271 ◽  
Author(s):  
Sriparna Chattopadhyay ◽  
Kamal Lochan Patra ◽  
Binod Kumar Sahoo
2019 ◽  
Vol 19 (02) ◽  
pp. 2050040 ◽  
Author(s):  
Sriparna Chattopadhyay ◽  
Kamal Lochan Patra ◽  
Binod Kumar Sahoo

The power graph [Formula: see text] of a given finite group [Formula: see text] is the simple undirected graph whose vertices are the elements of [Formula: see text], in which two distinct vertices are adjacent if and only if one of them can be obtained as an integral power of the other. The vertex connectivity [Formula: see text] of [Formula: see text] is the minimum number of vertices which need to be removed from [Formula: see text] so that the induced subgraph of [Formula: see text] on the remaining vertices is disconnected or has only one vertex. For a positive integer [Formula: see text], let [Formula: see text] be the cyclic group of order [Formula: see text]. Suppose that the prime power decomposition of [Formula: see text] is given by [Formula: see text], where [Formula: see text], [Formula: see text] are positive integers and [Formula: see text] are prime numbers with [Formula: see text]. The vertex connectivity [Formula: see text] of [Formula: see text] is known for [Formula: see text], see [Panda and Krishna, On connectedness of power graphs of finite groups, J. Algebra Appl. 17(10) (2018) 1850184, 20 pp, Chattopadhyay, Patra and Sahoo, Vertex connectivity of the power graph of a finite cyclic group, to appear in Discr. Appl. Math., https://doi.org/10.1016/j.dam.2018.06.001]. In this paper, for [Formula: see text], we give a new upper bound for [Formula: see text] and determine [Formula: see text] when [Formula: see text]. We also determine [Formula: see text] when [Formula: see text] is a product of distinct prime numbers.


2019 ◽  
Vol 19 (02) ◽  
pp. 2092001
Author(s):  
Sriparna Chattopadhyay ◽  
Kamal Lochan Patra ◽  
Binod Kumar Sahoo

We retract [1, Lemma 3.4] as the statement is incorrect. In consequence, we correct the statements of Theorems 1.2 and 4.5 and their proofs.


2021 ◽  
Author(s):  
Ryszard Mazurek

AbstractFor any commutative semigroup S and positive integer m the power function $$f: S \rightarrow S$$ f : S → S defined by $$f(x) = x^m$$ f ( x ) = x m is an endomorphism of S. We partly solve the Lesokhin–Oman problem of characterizing the commutative semigroups whose all endomorphisms are power functions. Namely, we prove that every endomorphism of a commutative monoid S is a power function if and only if S is a finite cyclic group, and that every endomorphism of a commutative ACCP-semigroup S with an idempotent is a power function if and only if S is a finite cyclic semigroup. Furthermore, we prove that every endomorphism of a nontrivial commutative atomic monoid S with 0, preserving 0 and 1, is a power function if and only if either S is a finite cyclic group with zero adjoined or S is a cyclic nilsemigroup with identity adjoined. We also prove that every endomorphism of a 2-generated commutative semigroup S without idempotents is a power function if and only if S is a subsemigroup of the infinite cyclic semigroup.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
K. Mageshwaran ◽  
G. Kalaimurugan ◽  
Bussakorn Hammachukiattikul ◽  
Vediyappan Govindan ◽  
Ismail Naci Cangul

An L h , k -labeling of a graph G = V , E is a function f : V ⟶ 0 , ∞ such that the positive difference between labels of the neighbouring vertices is at least h and the positive difference between the vertices separated by a distance 2 is at least k . The difference between the highest and lowest assigned values is the index of an L h , k -labeling. The minimum number for which the graph admits an L h , k -labeling is called the required possible index of L h , k -labeling of G , and it is denoted by λ k h G . In this paper, we obtain an upper bound for the index of the L h , k -labeling for an inverse graph associated with a finite cyclic group, and we also establish the fact that the upper bound is sharp. Finally, we investigate a relation between L h , k -labeling with radio labeling of an inverse graph associated with a finite cyclic group.


2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Jeffrey M. Riedl

We present a useful new characterization of the automorphisms of the regular wreath product group of a finite cyclic -group by a finite cyclic -group, for any prime , and we discuss an application. We also present a short new proof, based on representation theory, for determining the order of the automorphism group Aut(), where is the regular wreath product of a finite cyclic -group by an arbitrary finite -group.


1987 ◽  
Vol 39 (4) ◽  
pp. 969-982 ◽  
Author(s):  
Michel Boileau ◽  
Erica Flapan

In this paper we consider free actions of finite cyclic groups on the pair (S3, K), where K is a knot in S3. That is, we look at periodic diffeo-morphisms f of (S3, K) such that fn is fixed point free, for all n less than the order of f. Note that such actions are always orientation preserving. We will show that if K is a non-trivial prime knot then, up to conjugacy, (S3, K) has at most one free finite cyclic group action of a given order. In addition, if all of the companions of K are prime, then all of the free periodic diffeo-morphisms of (S3, K) are conjugate to elements of one cyclic group which acts freely on (S3, K). More specifically, we prove the following two theorems.THEOREM 1. Let K be a non-trivial prime knot. If f and g are free periodic diffeomorphisms of (S3, K) of the same order, then f is conjugate to a power of g.


Author(s):  
Ramesh Prasad Panda ◽  
Kamal Lochan Patra ◽  
Binod Kumar Sahoo

The power graph [Formula: see text] of a finite group [Formula: see text] is the undirected simple graph whose vertex set is [Formula: see text], in which two distinct vertices are adjacent if one of them is an integral power of the other. For an integer [Formula: see text], let [Formula: see text] denote the cyclic group of order [Formula: see text] and let [Formula: see text] be the number of distinct prime divisors of [Formula: see text]. The minimum degree [Formula: see text] of [Formula: see text] is known for [Formula: see text], see [R. P. Panda and K. V. Krishna, On the minimum degree, edge-connectivity and connectivity of power graphs of finite groups, Comm. Algebra 46(7) (2018) 3182–3197]. For [Formula: see text], under certain conditions involving the prime divisors of [Formula: see text], we identify at most [Formula: see text] vertices such that [Formula: see text] is equal to the degree of at least one of these vertices. If [Formula: see text], or that [Formula: see text] is a product of distinct primes, we are able to identify two such vertices without any condition on the prime divisors of [Formula: see text].


2019 ◽  
Vol 28 (11) ◽  
pp. 1940006
Author(s):  
Nafaa Chbili ◽  
Hajer Jebali

Extended strongly periodic links have been introduced by Przytycki and Sokolov as a symmetric surgery presentation of three-manifolds on which the finite cyclic group acts without fixed points. The purpose of this paper is to prove that the symmetry of these links is reflected by the first coefficients of the HOMFLYPT polynomial.


Sign in / Sign up

Export Citation Format

Share Document