scholarly journals A test of Radial Acceleration Relation for the Giles et al Chandra cluster sample

2021 ◽  
pp. 100854
Author(s):  
S. Pradyumna ◽  
Shantanu Desai
Author(s):  
Gabriele U Varieschi

Abstract We continue our analysis of Newtonian Fractional-Dimension Gravity, an extension of the standard laws of Newtonian gravity to lower dimensional spaces including those with fractional (i.e., non-integer) dimension. We apply our model to three rotationally supported galaxies: NGC 7814 (Bulge-Dominated Spiral), NGC 6503 (Disk-Dominated Spiral), and NGC 3741 (Gas-Dominated Dwarf). As was done in the general cases of spherically-symmetric and axially-symmetric structures, which were studied in previous work on the subject, we examine a possible connection between our model and Modified Newtonian Dynamics, a leading alternative gravity model which explains the observed properties of these galaxies without requiring the Dark Matter hypothesis. In our model, the MOND acceleration constant a0 ≃ 1.2 × 10−10m s−2 can be related to a natural scale length l0, namely $a_{0} \approx GM/l_{0}^{2}$ for a galaxy of mass M. Also, the empirical Radial Acceleration Relation, connecting the observed radial acceleration gobs with the baryonic one gbar, can be explained in terms of a variable local dimension D. As an example of this methodology, we provide detailed rotation curve fits for the three galaxies mentioned above.


2017 ◽  
Vol 24 (7) ◽  
pp. 072503 ◽  
Author(s):  
F. Palermo ◽  
E. Poli ◽  
A. Bottino ◽  
A. Biancalani ◽  
G. D. Conway ◽  
...  

Nature ◽  
2003 ◽  
Vol 425 (6953) ◽  
pp. 38-38 ◽  
Author(s):  
J. Patrick Shelby ◽  
David S.W. Lim ◽  
Jason S. Kuo ◽  
Daniel T. Chiu
Keyword(s):  

2021 ◽  
Author(s):  
Rahmat Ashari ◽  
Owen Sorensen ◽  
Pradeepkumar Ashok ◽  
Eric van Oort ◽  
Matthew Isbell ◽  
...  

Abstract Although numerous studies have investigated how shocks and vibrations contribute to bottomhole assembly (BHA) failures during hole-making, very few have explicitly focused on shock and vibrational behaviors during drillpipe connections. This study adopts a data-driven approach to explore various connection practices and their associated shocks and vibrations, aiming to propose optimum "connection recipes" that minimize negative drillstring impacts during connections. This study utilized data from surface sensors as well as downhole accelerometers and gyroscopes installed both at a downhole sub and the bit. In total, 520 connections from 5 lateral sections were studied. Several quality checks and corrections were performed to ensure synchronization between surface and downhole data. The analyses focused on two connection phases specifically: going off-bottom and going back to bottom. The presence of stick-slip events and high magnitudes of both maximum and root mean squared (RMS) radial accelerations were examined together with the associated surface drilling parameters. Various visualization approaches were performed to help demonstrate the vibration and shock behaviors resulting from different going off-bottom and going back to bottom practices. The analyses showed that restarting surface rotational speed at low values (≤ 40 RPM) risks inducing stick-slip events when going back to bottom. When the surface RPM was increased sufficiently, a notable reduction in RMS radial acceleration was observed. Maximum radial acceleration magnitude was highest before WOB application, which could be mitigated by immediate WOB re-application. Appreciable variation in the maximum radial acceleration was apparent when restarting at low (≤ 15 klbf) WOB values. When going off-bottom, drilling off should be accompanied by a reduction in the surface rotational speed to avoid a jump in the maximum radial acceleration values. This work provides suggestions on how to execute better connections. Since the impacts of shocks and vibrations during connections have previously been largely overlooked, this study fills a knowledge gap to help establish better practices and automation routines to improve the lifespan of the bit and downhole tools.


Author(s):  
Yunbo Yuan ◽  
Wei Liu ◽  
Yahui Chen ◽  
Donghua Wang

Certain operating conditions such as fluctuation of the external torque to planetary gear sets can cause additional sidebands. In this paper, a mathematical model is proposed to investigate the modulation mechanisms due to a fluctuated external torque (FET), and the combined influence of such an external torque and manufacturing errors (ME) on modulation sidebands. Gear mesh interface excitations, namely gear static transmission error excitations and time-varying gear mesh stiffness, are defined in Fourier series forms. Amplitude and frequency modulations are demonstrated separately. The predicted dynamic gear mesh force spectra and radial acceleration spectra at a fixed position on ring gear are both shown to exhibit well-defined modulation sidebands. Comparing with sidebands caused by ME, more complex sidebands appear when taking both FET and ME into account. An obvious intermodulation is found around the fundamental gear mesh frequency between the FET and ME in the form of frequency modulations, however, no intermodulation in the form of amplitude modulations. Additionally, the results indicate that some of the sidebands are cancelled out in radial acceleration spectra mainly due to the effect of planet mesh phasing, especially when only amplitude modulations are present.


Sign in / Sign up

Export Citation Format

Share Document