external torque
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 28)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Huang Hsiang Lin ◽  
Alexander Croy ◽  
Rafael Gutierrez ◽  
Christian Joachim ◽  
Gianaurelio Cuniberti

Abstract We perform molecular dynamics simulations to study the collective rotation of a graphene nanodisk functionalized on its circumference by tert-butylphenyl chemical groups in interaction with a molecule-gear hexa-tert-butylphenylbenzene supported by a Cu(111) surface. The rotational motion can be categorized underdriving, driving and overdriving regimes calculating the locking coefficient of this machinery as a function of external torque applied. Moreover, the rotational friction with the surface of both the phononic and electronic contributions is investigated. It shows that for small size graphene nanodisks the phononic friction is the main contribution, whereas the electronic one dominates for the larger disks putting constrains on the experimental way of achieving the transfer of rotation from a graphene nanodisk to single molecule-gear.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7695
Author(s):  
Sheng-He Wang

Recently, due to the development of automation technology, torque measuring and monitoring technologies have been brought to the focus. However, the commercially available sensors have the disadvantage of large volume, which results in the difficulty of installation on existing automated machines. Responding to the above-mentioned problem, a contactless torque sensor that uses an electromagnetic coil combined with a permanent magnet was proposed. By adjusting the input electric current in the coil, the strength of the magnetic field can be controlled to generate a non-contact magnetic force to resist external torque loading. For the measurement of such a magnetic force, a cantilever-beam mechanism comprising a piezoelectric-loading (PZT-L) sensor is employed to estimate the external static force by measuring the variation of the electric impedance. According to the measured results, the proposed PZT-L sensor demonstrates the accuracy of the proposed design, for which the maximum estimated error was around 6%. Finally, the proposed contactless torque sensor with 11 cm in diameter and 2 cm in thickness was employed to verify the effectiveness of theoretical analysis. From the sensor characteristic measurement, the detection range for external torque can be from 7.8 to 125.6 N-mm when the driven current input ranged from 2 to 10 A. Therefore, the experimental results presented that the moment of inertia via the resisted torque can be adjusted by the proposed non-contact torque-sensing system according to the measuring condition.


Author(s):  
Zi-Hua Weng

The paper focuses on applying the octonions to explore the influence of the external torque on the angular momentum of fluid elements, revealing the interconnection of the external torque and the vortices of vortex streets. J. C. Maxwell was the first to introduce the quaternions to study the physical properties of electromagnetic fields. The contemporary scholars utilize the quaternions and octonions to investigate the electromagnetic theory, gravitational theory, quantum mechanics, special relativity, general relativity and curved spaces and so forth. The paper adopts the octonions to describe the electromagnetic and gravitational theories, including the octonionic field potential, field strength, linear momentum, angular momentum, torque and force and so on. In case the octonion force is equal to zero, it is able to deduce eight independent equations, including the fluid continuity equation, current continuity equation, and force equilibrium equation and so forth. Especially, one of the eight independent equations will uncover the interrelation of the external torque and angular momentums of fluid elements. One of its inferences is that the direction, magnitude and frequency of the external torque must impact the direction and curl of the angular momentum of fluid elements, altering the frequencies of Karman vortex streets within the fluids. It means that the external torque is interrelated with the velocity circulation, by means of the liquid viscosity. The external torque is able to exert an influence on the direction of downwash flows, improving the lift and drag characteristics generated by the fluids.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Binluan Wang ◽  
Hongzhe Jin ◽  
Jie Zhao ◽  
Yubin Liu ◽  
Xiufang Liu

This study presents a cost-effective sensorless whole-body compliance control strategy for collaborative manipulator. The control strategy realizes decoupled adjustable compliant effects, namely, stiffness, damping, and inertia controls, under a single control framework. The inherent position controller is retained, which ensures a smooth transition between normal position operation and compliance control. The two features can greatly simplify the customization of collaborative manipulator control algorithms. A modified sensorless disturbance observer based on generalized momentum is used to estimate the external torque, and this way eliminates the dependence on the force/torque sensors. Only basic motor position sensors are required. The compliant trajectory generated by the external torque is sufficiently smooth owing to the haptic filter. Various experiments prove that the modified sensorless disturbance observer is effective. The necessity of using the position servo loop for sensorless compliance control is discussed through a comparative experiment. The proposed compliance control strategy is further verified using sensorless and sensor-based disturbance observers.


2021 ◽  
Vol 11 (6) ◽  
pp. 2872
Author(s):  
Chingszu Lin ◽  
Taiki Ogata ◽  
Zhihang Zhong ◽  
Masako Kanai-Pak ◽  
Jukai Maeda ◽  
...  

Recently, human patient simulators have been widely developed as substitutes for real patients with the objective of applying them as training tools in nursing education. Such simulated training is perceived as beneficial for imparting the required practical skills to students. Considering the aging world population, this study aimed to develop a robot patient for training nursing students in the sit-to-stand (STS) transfer skill, which is indispensable in caring for elderly people. To assess a student’s skill, the robot patient should be able to access the skill correctness and behave according to whether the skill is correctly or incorrectly implemented. Accordingly, an STS control method was proposed to reproduce the different STS movements during correct and incorrect applications of the skill by the nurses. The lower limbs of a prototype robot were redesigned to provide an active joint with a compliant unit, which enables the measurement of external torque and flexibility of the human joint to be reproduced. An experiment was conducted with four nurse teachers, each of whom was asked to demonstrate both correct and incorrect STS transfer skills. The results of the external torque and joint torque measured in robot’s lower limbs revealed that a significant difference (p < 0.05) between correct and incorrect skills. It also indicates the introduction of the proposed control method for the robot can satisfy the requirement of the assessment of STS skill. Among the various measurements conducted, the external torque of the hip joint exhibited the most significant difference and therefore represented the most robust measure for assessing whether the STS transfer skill was correctly applied.


2020 ◽  
Vol 18 (4) ◽  
pp. 431-458
Author(s):  
Bijoy K. Ghosh ◽  
Bhagya Athukorallage

AbstractIn this paper, we consider eyes from the human binocular system, that simultaneously gaze on stationary point targets in space, while optimally skipping from one target to the next, by rotating their individual gaze directions. The head is assumed fixed on the torso and the rotating gaze directions of the two eyes are assumed restricted to pass through a point in the visual space. It is further assumed that, individually the rotations of the two eyes satisfy the well known Listing’s law. We formulate and study a combined optimal gaze rotation for the two eyes, by constructing a single Riemannian metric, on the associated parameter space. The goal is to optimally rotate so that the convergent gaze changes between two pre-specified target points in a finite time interval [0, 1]. The cost function we choose is the total energy, measured by the $$L^2$$ L 2 norm, of the six external torques on the binocular system. The torque functions are synthesized by solving an associated ‘two-point boundary value problem’. The paper demonstrates, via simulation, the shape of the optimal gaze trajectory of the focused point of the binocular system. The Euclidean distance between the initial and the final point is compared to the arc-length of the optimal trajectory. The consumed energy, is computed for different eye movement chores and discussed in the paper. Via simulation we observe that certain eye movement maneuvers are energy efficient and demonstrate that the optimal external torque is a linear function in time. We also explore and conclude that splitting an arbitrary optimal eye movement into optimal vergence and version components is not energy efficient although this is how the human oculomotor control seems to operate. Optimal gaze trajectories and optimal external torque functions reported in this paper is new.


Sign in / Sign up

Export Citation Format

Share Document