scholarly journals Frequent items in streaming data: An experimental evaluation of the state-of-the-art

2009 ◽  
Vol 68 (4) ◽  
pp. 415-430 ◽  
Author(s):  
Nishad Manerikar ◽  
Themis Palpanas
Author(s):  
Zhenyang Zhu ◽  
Xiaoyang Mao

AbstractPeople with color vision deficiency (CVD) have a reduced capability to discriminate different colors. This impairment can cause inconveniences in the individuals’ daily lives and may even expose them to dangerous situations, such as failing to read traffic signals. CVD affects approximately 200 million people worldwide. In order to compensate for CVD, a significant number of image recoloring studies have been proposed. In this survey, we briefly review the representative existing recoloring methods and categorize them according to their methodological characteristics. Concurrently, we summarize the evaluation metrics, both subjective and quantitative, introduced in the existing studies and compare the state-of-the-art studies using the experimental evaluation results with the quantitative metrics.


2021 ◽  
Vol 71 ◽  
pp. 371-399
Author(s):  
Laura Perez-Beltrachini ◽  
Mirella Lapata

The ability to convey relevant and diverse information is critical in multi-document summarization and yet remains elusive for neural seq-to-seq models whose outputs are often redundant and fail to correctly cover important details. In this work, we propose an attention mechanism which encourages greater focus on relevance and diversity. Attention weights are computed based on (proportional) probabilities given by Determinantal Point Processes (DPPs) defined on the set of content units to be summarized. DPPs have been successfully used in extractive summarisation, here we use them to select relevant and diverse content for neural abstractive summarisation. We integrate DPP-based attention with various seq-to-seq architectures ranging from CNNs to LSTMs, and Transformers. Experimental evaluation shows that our attention mechanism consistently improves summarization and delivers performance comparable with the state-of-the-art on the MultiNews dataset


Author(s):  
Matthias Thimm ◽  
Federico Cerutti ◽  
Mauro Vallati

We address the problem of deciding skeptical acceptance wrt. preferred semantics of an argument in abstract argumentation frameworks, i.e., the problem of deciding whether an argument is contained in all maximally admissible sets, a.k.a. preferred extensions. State-of-the-art algorithms solve this problem with iterative calls to an external SAT-solver to determine preferred extensions. We provide a new characterisation of skeptical acceptance wrt. preferred semantics that does not involve the notion of a preferred extension. We then develop a new algorithm that also relies on iterative calls to an external SAT-solver but avoids the costly part of maximising admissible sets. We present the results of an experimental evaluation that shows that this new approach significantly outperforms the state of the art. We also apply similar ideas to develop a new algorithm for computing the ideal extension.


Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


2003 ◽  
Vol 48 (6) ◽  
pp. 826-829 ◽  
Author(s):  
Eric Amsel
Keyword(s):  

1968 ◽  
Vol 13 (9) ◽  
pp. 479-480
Author(s):  
LEWIS PETRINOVICH
Keyword(s):  

1984 ◽  
Vol 29 (5) ◽  
pp. 426-428
Author(s):  
Anthony R. D'Augelli

1991 ◽  
Vol 36 (2) ◽  
pp. 140-140
Author(s):  
John A. Corson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document