B-cell epitope engineering: A matter of recognizing protein features and motives

2008 ◽  
Vol 5 (2-3) ◽  
pp. e49-e55 ◽  
Author(s):  
Erwin L. Roggen
Keyword(s):  
B Cell ◽  
Author(s):  
Zaytsev Sergey ◽  
Motin Vladimir ◽  
Khizhnyakova Mariya ◽  
Feodorova Valentina Anatolievna ◽  
Elena Lyapina ◽  
...  

Virology ◽  
1998 ◽  
Vol 249 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Richard A. Santos ◽  
Jorge A. Padilla ◽  
Christopher Hatfield ◽  
Charles Grose

2017 ◽  
Vol 8 ◽  
Author(s):  
Rodrigo Nunes Rodrigues-da-Silva ◽  
Isabela Ferreira Soares ◽  
Cesar Lopez-Camacho ◽  
João Hermínio Martins da Silva ◽  
Daiana de Souza Perce-da-Silva ◽  
...  

2011 ◽  
Vol 7 (8) ◽  
pp. 849-855 ◽  
Author(s):  
Zhengqiong Chen ◽  
Wei He ◽  
Yuzhang Wu ◽  
Ping Yan ◽  
Haiyang He ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Li Cen Lim ◽  
Yee Ying Lim ◽  
Yee Siew Choong

Abstract B-cell epitope will be recognized and attached to the surface of receptors in B-lymphocytes to trigger immune response, thus are the vital elements in the field of epitope-based vaccine design, antibody production and therapeutic development. However, the experimental approaches in mapping epitopes are time consuming and costly. Computational prediction could offer an unbiased preliminary selection to reduce the number of epitopes for experimental validation. The deposited B-cell epitopes in the databases are those with experimentally determined positive/negative peptides and some are ambiguous resulted from different experimental methods. Prior to the development of B-cell epitope prediction module, the available dataset need to be handled with care. In this work, we first pre-processed the B-cell epitope dataset prior to B-cell epitopes prediction based on pattern recognition using support vector machine (SVM). By using only the absolute epitopes and non-epitopes, the datasets were classified into five categories of pathogen and worked on the 6-mers peptide sequences. The pre-processing of the datasets have improved the B-cell epitope prediction performance up to 99.1 % accuracy and showed significant improvement in cross validation results. It could be useful when incorporated with physicochemical propensity ranking in the future for the development of B-cell epitope prediction module.


Author(s):  
Yasser EL-Manzalawy ◽  
Vasant Honavar

Sign in / Sign up

Export Citation Format

Share Document