Reduced muscle mass and accumulation of visceral fat are independently associated with increased arterial stiffness in postmenopausal women with type 2 diabetes mellitus

2016 ◽  
Vol 122 ◽  
pp. 141-147 ◽  
Author(s):  
Ken-ichiro Tanaka ◽  
Ippei Kanazawa ◽  
Toshitsugu Sugimoto
2017 ◽  
pp. 99-111 ◽  
Author(s):  
I. RAŠKA ◽  
M. RAŠKOVÁ ◽  
V. ZIKÁN ◽  
J. ŠKRHA

Type 2 diabetes mellitus (T2DM) is associated with increased fracture risk; the underlying mechanism remains unexplained. This study aimed to investigate the relationships between body composition and bone and glucose metabolism in postmenopausal women with T2DM. Dual-energy X-ray absorptiometry was used to measure bone mineral density (BMD) and body composition. A total of 68 postmenopausal women with T2DM and 71 controls were eligible for the study. In contrast to normal BMD in T2DM, a similar prevalence of low-trauma fractures was observed in both groups. T2DM women had significantly higher Trunk fat% and A/G ratio and significantly lower Legs LM% and Legs FM%. Legs LM% was significantly lower in fractured T2DM group and negatively correlated with glycaemia and HbA1c (p<0.01). Serum osteocalcin was significantly lower in T2DM and inversely correlated with FM%, Trunk FM% and A/G ratio (p<0.01) and positively correlated with Legs FM% and total LM% (p<0.05). In conclusion, abdominal obesity and decrease in muscle mass may contribute to low bone formation in T2DM women. Further research is needed to unravel underlying pathophysiological mechanisms and to determine whether maintenance of muscle mass, especially in the lower extremities and/or reduction of central fat mass can prevent fractures.


2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
F Ahmadizar ◽  
K Wang ◽  
F Mattace Raso ◽  
MA Ikram ◽  
M Kavousi

Abstract Funding Acknowledgements Type of funding sources: None. Background. Arterial stiffness/remodeling results in impaired blood flow and, eventually, decreased glucose disposal in peripheral tissues and increased blood glucose. Besides, increased arterial stiffness/remodeling may lead to hypertension, as a potential reciprocal risk factor for type 2 diabetes mellitus (T2D). We, therefore, hypothesized that increased arterial stiffness/remodeling is associated with an increased risk of T2D. Purpose. To study the associations between arterial stiffness/remodeling and incident T2D. Methods. We used the prospective population-based Rotterdam Study. Common carotid arterial properties were ultrasonically determined in plaque-free areas. Aortic stiffness was estimated by carotid-femoral pulse wave velocity (cf_PWV), carotid stiffness was estimated by the carotid distensibility coefficient (carDC). Arterial remodeling was estimated by carotid artery lumen diameter (carDi), carotid intima-media thickness (cIMT), mean circumferential wall stress (CWSmean), and pulsatile circumferential wall stress (CWSpuls). Cox proportional hazard regression analysis was used to estimate the associations between arterial stiffness/remodeling and the risk of incident T2D, adjusted for age, sex, cohort, mean arterial pressure (MAP), antihypertensive medications, heart rate, non- high-density lipoprotein (HDL)-cholesterol, lipid-lowering medications, and smoking. We included interaction terms in the fully adjusted models to study whether any significant associations were modified by sex, age, blood glucose, or MAP. Spearman correlation analyses were applied to examine the correlations between measurements of arterial stiffness/remodeling and glycemic traits. Results. We included 3,055 individuals free of T2D at baseline (mean (SD) age, 67.2 (7.9) years). During a median follow-up of 14.0 years, 395 (12.9%) T2D occurred. After adjustments, higher cf_PWV (hazard ratio (HR),1.18; 95%CI:1.04-1.35), carDi (1.17; 1.04-1.32), cIMT (1.15; 1.01-1.32), and CWSpuls (1.28; 1.12-1.47) were associated with increased risk of incident T2D. After further adjustment for the baseline glucose, the associations attenuated but remained statistically significant. Sex, age, blood glucose, or MAP did not modify the associations between measurements of arterial stiffness/remodeling, and incident T2D. Among the population with prediabetes at baseline (n = 513) compared to the general population, larger cIMT was associated with a greater increase in the risk of T2D. Most measurements of arterial stiffness/remodeling significantly but weakly correlated with baseline glycemic traits, particularly with blood glucose.  Conclusions. Our study suggests that greater arterial stiffness/remodeling is independently associated with an increased risk of T2D development. Blood glucose and hypertension do not seem to play significant roles in these associations. Further studies should disentangle the underlying mechanism that links arterial stiffness/remodeling and T2D.


2013 ◽  
Vol 7 (3-4) ◽  
pp. 194 ◽  
Author(s):  
Rachel E.D. Climie ◽  
Sonja B. Nikolic ◽  
Petr Otahal ◽  
Laura J. Keith ◽  
James E. Sharman

Sign in / Sign up

Export Citation Format

Share Document