scholarly journals De novo whole genome sequencing data of two mangrove-isolated microalgae from Terengganu coastal waters

Data in Brief ◽  
2019 ◽  
Vol 27 ◽  
pp. 104680 ◽  
Author(s):  
Kit Yinn Teh ◽  
C.L.Wan Afifudeen ◽  
Ahmad Aziz ◽  
Li Lian Wong ◽  
Saw Hong Loh ◽  
...  
2017 ◽  
Author(s):  
Adriana Munoz ◽  
Boris Yamrom ◽  
Yoon-ha Lee ◽  
Peter Andrews ◽  
Steven Marks ◽  
...  

AbstractCopy number profiling and whole-exome sequencing has allowed us to make remarkable progress in our understanding of the genetics of autism over the past ten years, but there are major aspects of the genetics that are unresolved. Through whole-genome sequencing, additional types of genetic variants can be observed. These variants are abundant and to know which are functional is challenging. We have analyzed whole-genome sequencing data from 510 of the Simons Simplex Collections quad families and focused our attention on intronic variants. Within the introns of 546 high-quality autism target genes, we identified 63 de novo indels in the affected and only 37 in the unaffected siblings. The difference of 26 events is significantly larger than expected (p-val = 0.01) and using reasonable extrapolation shows that de novo intronic indels can contribute to at least 10% of simplex autism. The significance increases if we restrict to the half of the autism targets that are intolerant to damaging variants in the normal human population, which half we expect to be even more enriched for autism genes. For these 273 targets we observe 43 and 20 events in affected and unaffected siblings, respectively (p-value of 0.005). There was no significant signal in the number of de novo intronic indels in any of the control sets of genes analyzed. We see no signal from de novo substitutions in the introns of target genes.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Marina Braun ◽  
Annika Lehmbecker ◽  
Deborah Eikelberg ◽  
Maren Hellige ◽  
Andreas Beineke ◽  
...  

Abstract Background Bovine frontonasal dysplasias like arhinencephaly, synophthalmia, cyclopia and anophthalmia are sporadic congenital facial malformations. In this study, computed tomography, necropsy, histopathological examinations and whole genome sequencing on an Illumina NextSeq500 were performed to characterize a stillborn Limousin calf with frontonasal dysplasia. In order to identify private genetic and structural variants, we screened whole genome sequencing data of the affected calf and unaffected relatives including parents, a maternal and paternal halfsibling. Results The stillborn calf exhibited severe craniofacial malformations. Nose and maxilla were absent, mandibles were upwardly curved and a median cleft palate was evident. Eyes, optic nerve and orbital cavities were not developed and the rudimentary orbita showed hypotelorism. A defect centrally in the front skull covered with a membrane extended into the intracranial cavity. Aprosencephaly affected telencephalic and diencephalic structures and cerebellum. In addition, a shortened tail was seen. Filtering whole genome sequencing data revealed a private frameshift variant within the candidate gene ZIC2 in the affected calf. This variant was heterozygous mutant in this case and homozygous wild type in parents, half-siblings and controls. Conclusions We found a novel ZIC2 frameshift mutation in an aprosencephalic Limousin calf. The origin of this variant is most likely due to a de novo mutation in the germline of one parent or during very early embryonic development. To the authors’ best knowledge, this is the first identified mutation in cattle associated with bovine frontonasal dysplasia.


2020 ◽  
Author(s):  
Evin M. Padhi ◽  
Tristan J. Hayeck ◽  
Brandon Mannion ◽  
Sumantra Chatterjee ◽  
Marta Byrska-Bishop ◽  
...  

AbstractPrevious research in autism and other neurodevelopmental disorders (NDDs) has indicated an important contribution of de novo protein-coding variants within specific genes. The role of de novo noncoding variation has been observable as a general increase in genetic burden but has yet to be resolved to individual functional elements. In this study, we assessed whole-genome sequencing data in 2,671 families with autism, with a specific focus on de novo variation in enhancers with previously characterized in vivo activity. We identified three independent de novo mutations limited to individuals with autism in the enhancer hs737. These mutations result in similar phenotypic characteristics, affect enhancer activity in vitro, and preferentially occur in AAT motifs in the enhancer with predicted disruptions of transcription factor binding. We also find that hs737 is enriched for copy number variation in individuals with NDDs, is dosage sensitive in the human population, is brain-specific, and targets the NDD gene EBF3 that is genome-wide significant for protein coding de novo variants, demonstrating the importance of understanding all forms of variation in the genome.One Sentence SummaryWhole-genome sequencing in thousands of families reveals variants relevant to simplex autism in a brain enhancer of the well-established neurodevelopmental disorder gene EBF3.


2017 ◽  
Vol 4 (1) ◽  
Author(s):  
Martin Malmstrøm ◽  
Michael Matschiner ◽  
Ole K. Tørresen ◽  
Kjetill S. Jakobsen ◽  
Sissel Jentoft

Heredity ◽  
2021 ◽  
Author(s):  
Axel Jensen ◽  
Mette Lillie ◽  
Kristofer Bergström ◽  
Per Larsson ◽  
Jacob Höglund

AbstractThe use of genetic markers in the context of conservation is largely being outcompeted by whole-genome data. Comparative studies between the two are sparse, and the knowledge about potential effects of this methodology shift is limited. Here, we used whole-genome sequencing data to assess the genetic status of peripheral populations of the wels catfish (Silurus glanis), and discuss the results in light of a recent microsatellite study of the same populations. The Swedish populations of the wels catfish have suffered from severe declines during the last centuries and persists in only a few isolated water systems. Fragmented populations generally are at greater risk of extinction, for example due to loss of genetic diversity, and may thus require conservation actions. We sequenced individuals from the three remaining native populations (Båven, Emån, and Möckeln) and one reintroduced population of admixed origin (Helge å), and found that genetic diversity was highest in Emån but low overall, with strong differentiation among the populations. No signature of recent inbreeding was found, but a considerable number of short runs of homozygosity were present in all populations, likely linked to historically small population sizes and bottleneck events. Genetic substructure within any of the native populations was at best weak. Individuals from the admixed population Helge å shared most genetic ancestry with the Båven population (72%). Our results are largely in agreement with the microsatellite study, and stresses the need to protect these isolated populations at the northern edge of the distribution of the species.


Sign in / Sign up

Export Citation Format

Share Document