teleost species
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 21)

H-INDEX

29
(FIVE YEARS 2)

2022 ◽  
Vol 82 ◽  
Author(s):  
R. Z. Gomes ◽  
A. L. Paschoalini ◽  
A. A. Weber ◽  
K. B. Santiago ◽  
E. Rizzo ◽  
...  

Abstract The release of water from the reservoir hypolimnion, lower concentration of oxygen and the anthropogenic regulation of the river flow, could affect the reproduction of fish, especially migratory species. However, little is known about the effects of these changes in water on non-migratory species. In this sense, the reproduction of Acestrohynchus lacustris was evaluated in two sections of São Francisco River, Minas Gerais, Brazil. Section 1, located immediately downstream from Três Marias Dam (18°09’31.65”S and 45°13’36.00”W) and section 2, located at the confluence of the São Francisco and the Abaeté Rivers (18°02’47.78”S and 45°10’57.95”W). For this, we obtained the physico-chemical parameters of water of each study section. Additionally, biometric data and biological indices of all specimens were measured. Fecundity and follicles diameters were measured in females. Temperature, dissolved oxygen and flow showed lower values in section 1. Fish captured in this section, had lower values of GSI in both sexes, and females presented decreased values of fecundity and follicles diameter. This species showed reproductive activity in the two sections analyzed, however, in section 1 where the temperature and dissolved oxygen presented significant lower values, the reproductive capacity of A. lacustris, was negatively affected.


2021 ◽  
Author(s):  
◽  
David T. Ashton

<p>Characterizing the genome and understanding how it influences phenotypic variation is a central goal for studies on evolution. The findings of genomic research are applicable to a wide range of human endeavours, including predicting disease risk, supporting selective breeding programmes, and understanding adaptive variation in natural populations. One industry that could particularly benefit from this knowledge is Aquaculture. In recent years, aquaculture production has been increasing to offset the production limits of wild fisheries. Genomics can be used in aquaculture to quantify variation of captive populations, reconstruct pedigrees, and improve the gains from selective breeding programs. The overall goal of this thesis research was to generate a genome-wide genotyping dataset and investigated several key traits for Australasian snapper (Chrysophrys auratus or Pagrus auratus). The findings will be used to establish one of the first genomics-informed New Zealand aquaculture programmes and provide a better understanding of the genotype-phenotype relationships in this teleost species.  The first two chapters of this thesis provide a review of the literature and establish the background information and context for the research in subsequent data chapters. A brief overview of genomics, fisheries and aquaculture, and the intersection of these two fields are provided in the Chapter 1. An in-depth quantitative review of 146 Quantitative Trait Loci (QTL) studies in teleost fish was then carried out in Chapter 2.  Chapter 3 provides details about the study population and the collection of genotyping data. Genotyping-By-Sequencing (GBS) was used to generate 11K Single Nucleotide Polymorphism (SNP) markers for individuals in the three generation pedigree. Together with phenotypic data the genotyping was used to reconstruct the pedigree, measure inbreeding, and estimate heritability for a range of traits. Parents were identified for 93% of the offspring and successful pedigree reconstruction indicated highly uneven contributions of each parent to the subsequent generations. The average inbreeding level did not change between generations, but significantly different inbreeding levels were observed between offspring from the two founding cohorts and as a result full and half sibling crosses within the group spawning teleost species. Heritability was estimated for a range of traits using both a pedigree relatedness matrix and a genomic relatedness matrix.  Chapter 4, uses the genotyping and phenotyping data to generate a linkage map and carry out a scan for quantitative trait loci (QTLs) associated with growth rate. The linkage map reported in this thesis is one of the highest density maps for any Sparidae species at the time of writing. It contained 24 linkage groups, which represent the 24 snapper chromosomes. Growth QTLs were found on three linkage groups and a scan of available genome data identified three candidate growth genes nearby on the linkage groups.  Chapter 5, uses the genotyping data and images collected during the study to characterize snappers blue spots and search for QTLs associated with spot numbers. QTLs were found on 12 of the 24 linkage groups, of which one was consistent between two QTL methods applied. A scan of available genome data identified the tyrosinase gene in the middle of the putative QTL region, which is a causal gene for iridophore cell numbers that form blue spots in other fish species.  Chapter 6, discuss the implications, future directions, and application of this research to the snapper breeding programme.</p>


2021 ◽  
Author(s):  
◽  
David T. Ashton

<p>Characterizing the genome and understanding how it influences phenotypic variation is a central goal for studies on evolution. The findings of genomic research are applicable to a wide range of human endeavours, including predicting disease risk, supporting selective breeding programmes, and understanding adaptive variation in natural populations. One industry that could particularly benefit from this knowledge is Aquaculture. In recent years, aquaculture production has been increasing to offset the production limits of wild fisheries. Genomics can be used in aquaculture to quantify variation of captive populations, reconstruct pedigrees, and improve the gains from selective breeding programs. The overall goal of this thesis research was to generate a genome-wide genotyping dataset and investigated several key traits for Australasian snapper (Chrysophrys auratus or Pagrus auratus). The findings will be used to establish one of the first genomics-informed New Zealand aquaculture programmes and provide a better understanding of the genotype-phenotype relationships in this teleost species.  The first two chapters of this thesis provide a review of the literature and establish the background information and context for the research in subsequent data chapters. A brief overview of genomics, fisheries and aquaculture, and the intersection of these two fields are provided in the Chapter 1. An in-depth quantitative review of 146 Quantitative Trait Loci (QTL) studies in teleost fish was then carried out in Chapter 2.  Chapter 3 provides details about the study population and the collection of genotyping data. Genotyping-By-Sequencing (GBS) was used to generate 11K Single Nucleotide Polymorphism (SNP) markers for individuals in the three generation pedigree. Together with phenotypic data the genotyping was used to reconstruct the pedigree, measure inbreeding, and estimate heritability for a range of traits. Parents were identified for 93% of the offspring and successful pedigree reconstruction indicated highly uneven contributions of each parent to the subsequent generations. The average inbreeding level did not change between generations, but significantly different inbreeding levels were observed between offspring from the two founding cohorts and as a result full and half sibling crosses within the group spawning teleost species. Heritability was estimated for a range of traits using both a pedigree relatedness matrix and a genomic relatedness matrix.  Chapter 4, uses the genotyping and phenotyping data to generate a linkage map and carry out a scan for quantitative trait loci (QTLs) associated with growth rate. The linkage map reported in this thesis is one of the highest density maps for any Sparidae species at the time of writing. It contained 24 linkage groups, which represent the 24 snapper chromosomes. Growth QTLs were found on three linkage groups and a scan of available genome data identified three candidate growth genes nearby on the linkage groups.  Chapter 5, uses the genotyping data and images collected during the study to characterize snappers blue spots and search for QTLs associated with spot numbers. QTLs were found on 12 of the 24 linkage groups, of which one was consistent between two QTL methods applied. A scan of available genome data identified the tyrosinase gene in the middle of the putative QTL region, which is a causal gene for iridophore cell numbers that form blue spots in other fish species.  Chapter 6, discuss the implications, future directions, and application of this research to the snapper breeding programme.</p>


Check List ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. 1515-1520
Author(s):  
Rodrigo Xavier Soares ◽  
Karlla Danielle Jorge Amorim ◽  
Amanda Torres Borges ◽  
Wagner Franco Molina ◽  
José Garcia Júnior

We report the first record of two teleost species from two archipelagos in the western equatorial Atlantic. We recorded the occurrence of Cantherhines pullus (Ranzani, 1842) (Monacanthidae, Tetraodontiformes) from the Fernando de Noronha Archipelago, a group of volcanic islands 345 km off the northeastern coast of Brazil. We also report the first regional record of Hemiramphus brasiliensis (Linnaeus, 1758) (Hemiramphidae, Beloniformes) from the Saint Peter and Saint Paul&rsquo;s Archipelago, which is a small and isolated group of rocky islands 520 km from the Fernando de Noronha Archipelago on the Mid-Atlantic Ridge.


Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2979
Author(s):  
Kristie Lawrence ◽  
Sally L. Sherwen ◽  
Hannah Larsen

This study investigated the behaviour of two Elasmobranch species; Southern fiddler ray (Trygonorrhina dumerilii, n = 1) and Port Jackson shark (Heterodontus portusjacksoni, n = 4) and two teleost species; moonlighter (Tilodon sexfasciatus, n = 1) and banded morwong (Cheilodactylus spectabilis, n = 1) living within a single enclosure. For this study, two treatments were compared, the original enclosure design, and then after the enclosure had been renovated to more closely represent the species natural habitats, with a raised front viewing glass to prevent visitor interaction. Behaviours such as resting, swimming and abnormal behaviours such as surface and perimeter swimming (elasmobranchs only) were recorded as well as location within the enclosure, for 10 days pre and 10 days post renovation. The Port Jackson sharks significantly reduced the performance of abnormal behaviours after renovation, and significantly increased the time spent near the exhibit front. The Southern fiddler ray increased resting post renovation, while the teleost species also spent more time near the exhibit front. Although a small sample size was used, the results suggest that a more naturalistic environment with multiple micro-habitats and effective visitor barriers allows for a greater proportion of the day spent exhibiting natural behaviours, greater space use and reduced stereotypes.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Floriane Picolo ◽  
Anna Grandchamp ◽  
Benoît Piégu ◽  
Antoine D. Rolland ◽  
Reiner A. Veitia ◽  
...  

Gene dosage is an important issue both in cell and evolutionary biology. Most genes are present in two copies or alleles in diploid eukariotic cells. The most outstanding exception is monoallelic gene expression (MA) that concerns genes localized on the X chromosome or in regions undergoing parental imprinting in eutherians, and many other genes scattered throughout the genome. In diploids, haploinsufficiency (HI) implies that a single functional copy of a gene in a diploid organism is insufficient to ensure a normal biological function. One of the most important mechanisms ensuring functional innovation during evolution is whole genome duplication (WGD). In addition to the two WGDs that have occurred in vertebrate genomes, the teleost genomes underwent an additional WGD, after their divergence from tetrapods. In the present work, we have studied on 57 teleost species whether the orthologs of human MA or HI genes remain more frequently in duplicates or returned more frequently in singleton than the rest of the genome. Our results show that the teleost orthologs of HI human genes remained more frequently in duplicate than the rest of the genome in all of the teleost species studied. No signal was observed for the orthologs of genes mapping to the human X chromosome or subjected to parental imprinting. Surprisingly, the teleost orthologs of the other human MA genes remained in duplicate more frequently than the rest of the genome for most teleost species. These results suggest that the teleost orthologs of MA and HI human genes also undergo selective pressures either related to absolute protein amounts and/or of dosage balance issues. However, these constraints seem to be different for MA genes in teleost in comparison with human genomes.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jia Li ◽  
Chao Bian ◽  
Yunhai Yi ◽  
Hui Yu ◽  
Xinxin You ◽  
...  

Abstract Background Global climate oscillation, as a selection dynamic, is an ecologically important element resulting in global biodiversity. During the glacial geological periods, most organisms suffered detrimental selection pressures (such as food shortage and habitat loss) and went through population declines. However, during the mild interglacial periods, many species re-flourished. These temporal dynamics of effective population sizes (Ne) provide essential information for understanding and predicting evolutionary outcomes during historical and ongoing global climate changes. Results Using high-quality genome assemblies and corresponding sequencing data, we applied the Pairwise Sequentially Markovian Coalescent (PSMC) method to quantify Ne changes of twelve representative teleost species from approximately 10 million years ago (mya) to 10 thousand years ago (kya). These results revealed multiple rounds of population contraction and expansion in most of the examined teleost species during the Neogene and the Quaternary periods. We observed that 83% (10/12) of the examined teleosts had experienced a drastic decline in Ne before the last glacial period (LGP, 110–12 kya), slightly earlier than the reported pattern of Ne changes in 38 avian species. In comparison with the peaks, almost all of the examined teleosts maintained long-term lower Ne values during the last few million years. This is consistent with increasingly dramatic glaciation during this period. Conclusion In summary, these findings provide a more comprehensive understanding of the historical Ne changes in teleosts. Results presented here could lead to the development of appropriate strategies to protect species in light of ongoing global climate changes.


2021 ◽  
Author(s):  
Mike Ruigrok ◽  
Andrew Catanach ◽  
Deepa Bowatte ◽  
Marcus Davey ◽  
Roy Storey ◽  
...  

Background: The genetic control of sex determinism in teleost species is poorly understood. This is partly because of the diversity of sex determining mechanisms in this large group, including constitutive genes linked to sex chromosomes, polygenic constitutive mechanisms, environmental factors, hermaphroditism, and unisexuality. Here we use a de novo genome assembly of New Zealand silver trevally (Pseudocaranx georgianus) together with whole genome sequencing to detect sexually divergent regions, identify candidate genes and develop molecular makers. Results: The de novo assembly of an unsexed trevally (Trevally_v1) resulted in an assembly of 579.4 Mb in length, with a N50 of 25.2 Mb. Of the assembled scaffolds, 24 were of chromosome scale, ranging from 11 to 31 Mb. A total of 28416 genes were annotated after 12.8% of the assembly was masked with repetitive elements. Whole genome re-sequencing of 13 sexed trevally (7 males, 6 females) identified sexually divergent regions located on two scaffolds, including a 6 kb region at the proximal end of chromosome 21. Blast analyses revealed similarity between one region and the aromatase genes cyp19 (a1a/b). Males contained higher numbers of heterozygous variants in both regions, while females showed regions of very low read-depth, indicative of deletions. Molecular markers tested on 96 histologically-sexed fish (42 males, 54 females). Three markers amplified in absolute correspondence with sex. Conclusions: The higher number of heterozygous variants in males combined with deletions in females support a XY sex-determination model, indicating the trevally_v1 genome assembly was based on a male. This sex system contrasts with the ZW-type sex system documented in closely related species. Our results indicate a likely sex-determining function of the cyp19b-like gene, suggesting the molecular pathway of sex determination is somewhat conserved in this family. Our genomic resources will facilitate future comparative genomics works in teleost species, and enable improved insights into the varied sex determination pathways in this group of vertebrates. The sex marker will be a valuable resource for aquaculture breeding programmes, and for determining sex ratios and sex-specific impacts in wild fisheries stocks of this species.  


Sign in / Sign up

Export Citation Format

Share Document