scholarly journals Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on maximal flag manifolds

2020 ◽  
Vol 73 ◽  
pp. 101684
Author(s):  
Lino Grama ◽  
Kennerson N. S. Lima
Author(s):  
Xiaojuan Tian ◽  
Yueting Zhou ◽  
Lihua Wang ◽  
Shenghu Ding

AbstractThe contact problem for thermoelectric materials with functionally graded properties is considered. The material properties, such as the electric conductivity, the thermal conductivity, the shear modulus, and the thermal expansion coefficient, vary in an exponential function. Using the Fourier transform technique, the electro-thermo-elastic problems are transformed into three sets of singular integral equations which are solved numerically in terms of the unknown normal electric current density, the normal energy flux, and the contact pressure. Meanwhile, the complex homogeneous solutions of the displacement fields caused by the gradient parameters are simplified with the help of Euler’s formula. After addressing the non-linearity excited by thermoelectric effects, the particular solutions of the displacement fields can be assessed. The effects of various combinations of material gradient parameters and thermoelectric loads on the contact behaviors of thermoelectric materials are presented. The results give a deep insight into the contact damage mechanism of functionally graded thermoelectric materials (FGTEMs).


2015 ◽  
Vol 26 (08) ◽  
pp. 1550064
Author(s):  
Bachir Bekka

Let Γ be a discrete group and 𝒩 a finite factor, and assume that both have Kazhdan's Property (T). For p ∈ [1, +∞), p ≠ 2, let π : Γ →O(Lp(𝒩)) be a homomorphism to the group O(Lp(𝒩)) of linear bijective isometries of the Lp-space of 𝒩. There are two actions πl and πr of a finite index subgroup Γ+ of Γ by automorphisms of 𝒩 associated to π and given by πl(g)x = (π(g) 1)*π(g)(x) and πr(g)x = π(g)(x)(π(g) 1)* for g ∈ Γ+ and x ∈ 𝒩. Assume that πl and πr are ergodic. We prove that π is locally rigid, that is, the orbit of π under O(Lp(𝒩)) is open in Hom (Γ, O(Lp(𝒩))). As a corollary, we obtain that, if moreover Γ is an ICC group, then the embedding g ↦ Ad (λ(g)) is locally rigid in O(Lp(𝒩(Γ))), where 𝒩(Γ) is the von Neumann algebra generated by the left regular representation λ of Γ.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicholas J. Fowler ◽  
Adnan Sljoka ◽  
Mike P. Williamson

AbstractWe present a method that measures the accuracy of NMR protein structures. It compares random coil index [RCI] against local rigidity predicted by mathematical rigidity theory, calculated from NMR structures [FIRST], using a correlation score (which assesses secondary structure), and an RMSD score (which measures overall rigidity). We test its performance using: structures refined in explicit solvent, which are much better than unrefined structures; decoy structures generated for 89 NMR structures; and conventional predictors of accuracy such as number of restraints per residue, restraint violations, energy of structure, ensemble RMSD, Ramachandran distribution, and clashscore. Restraint violations and RMSD are poor measures of accuracy. Comparisons of NMR to crystal structures show that secondary structure is equally accurate, but crystal structures are typically too rigid in loops, whereas NMR structures are typically too floppy overall. We show that the method is a useful addition to existing measures of accuracy.


Sign in / Sign up

Export Citation Format

Share Document