scholarly journals The distinguishing chromatic number of Cartesian products of two complete graphs

2010 ◽  
Vol 310 (12) ◽  
pp. 1715-1720 ◽  
Author(s):  
Janja Jerebic ◽  
Sandi Klavžar
10.37236/7740 ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Hemanshu Kaul ◽  
Jeffrey A. Mudrock

We study the list chromatic number of Cartesian products of graphs through the Alon-Tarsi number as defined by Jensen and Toft (1995) in their seminal book on graph coloring problems. The Alon-Tarsi number of $G$, $AT(G)$, is the smallest $k$ for which there is an orientation, $D$, of $G$ with max indegree $k\!-\!1$ such that the number of even and odd circulations contained in $D$ are different. It is known that $\chi(G) \leq \chi_\ell(G) \leq \chi_p(G) \leq AT(G)$, where  $\chi(G)$ is the chromatic number, $\chi_\ell(G)$ is the list chromatic number, and $\chi_p(G)$ is the paint number of $G$. In this paper we find families of graphs $G$ and $H$ such that $\chi(G \square H) = AT(G \square H)$, reducing this sequence of inequalities to equality. We show that the Alon-Tarsi number of the Cartesian product of an odd cycle and a path is always equal to 3. This result is then extended to show that if $G$ is an odd cycle or a complete graph and $H$ is a graph on at least two vertices containing the Hamilton path $w_1, w_2, \ldots, w_n$ such that for each $i$, $w_i$ has a most $k$ neighbors among $w_1, w_2, \ldots, w_{i-1}$, then $AT(G \square H) \leq \Delta(G)+k$ where $\Delta(G)$ is the maximum degree of $G$.  We discuss other extensions for $G \square H$, where $G$ is such that $V(G)$ can be partitioned into odd cycles and complete graphs, and $H$ is a graph containing a Hamiltonian path. We apply these bounds to get chromatic-choosable Cartesian products, in fact we show that these families of graphs have $\chi(G) = AT(G)$, improving previously known bounds.


2008 ◽  
Vol 29 (4) ◽  
pp. 922-929 ◽  
Author(s):  
Wilfried Imrich ◽  
Janja Jerebic ◽  
Sandi Klavžar

2018 ◽  
Vol 239 ◽  
pp. 82-93 ◽  
Author(s):  
Chuan Guo ◽  
Mike Newman

2019 ◽  
Vol 29 (04) ◽  
pp. 1950016
Author(s):  
Ajay Arora ◽  
Eddie Cheng ◽  
Colton Magnant

An path that is edge-colored is called proper if no two consecutive edges receive the same color. A general graph that is edge-colored is called properly connected if, for every pair of vertices in the graph, there exists a properly colored path from one to the other. Given two vertices u and v in a properly connected graph G, the proper distance is the length of the shortest properly colored path from u to v. By considering a specific class of colorings that are properly connected for Cartesian products of complete and cyclic graphs, we present results on the proper distance between all pairs of vertices in the graph.


2017 ◽  
Vol 09 (06) ◽  
pp. 1750075
Author(s):  
R. Rajarajachozhan ◽  
R. Sampathkumar

A modular [Formula: see text]-coloring, [Formula: see text] of a graph [Formula: see text] is a coloring of the vertices of [Formula: see text] with the elements in [Formula: see text] the set of integers modulo [Formula: see text] having the property that for every two adjacent vertices of [Formula: see text] the sums of the colors of their neighbors are different in [Formula: see text] The minimum [Formula: see text] for which [Formula: see text] has a modular [Formula: see text]-coloring is the modular chromatic number of [Formula: see text] This paper is concerned with the modular chromatic number of the Cartesian products [Formula: see text] [Formula: see text] and [Formula: see text]


10.37236/831 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Paz Carmi ◽  
Vida Dujmović ◽  
Pat Morin ◽  
David R. Wood

The distance-number of a graph $G$ is the minimum number of distinct edge-lengths over all straight-line drawings of $G$ in the plane. This definition generalises many well-known concepts in combinatorial geometry. We consider the distance-number of trees, graphs with no $K^-_4$-minor, complete bipartite graphs, complete graphs, and cartesian products. Our main results concern the distance-number of graphs with bounded degree. We prove that $n$-vertex graphs with bounded maximum degree and bounded treewidth have distance-number in ${\cal O}(\log n)$. To conclude such a logarithmic upper bound, both the degree and the treewidth need to be bounded. In particular, we construct graphs with treewidth $2$ and polynomial distance-number. Similarly, we prove that there exist graphs with maximum degree $5$ and arbitrarily large distance-number. Moreover, as $\Delta$ increases the existential lower bound on the distance-number of $\Delta$-regular graphs tends to $\Omega(n^{0.864138})$.


2013 ◽  
Vol 2 (1) ◽  
pp. 14
Author(s):  
Mariza Wenni

Let G and H be two connected graphs. Let c be a vertex k-coloring of aconnected graph G and let = fCg be a partition of V (G) into the resultingcolor classes. For each v 2 V (G), the color code of v is dened to be k-vector: c1; C2; :::; Ck(v) =(d(v; C1); d(v; C2); :::; d(v; Ck)), where d(v; Ci) = minfd(v; x) j x 2 Cg, 1 i k. Ifdistinct vertices have distinct color codes with respect to , then c is called a locatingcoloring of G. The locating chromatic number of G is the smallest natural number ksuch that there are locating coloring with k colors in G. The Cartesian product of graphG and H is a graph with vertex set V (G) V (H), where two vertices (a; b) and (a)are adjacent whenever a = a0and bb02 E(H), or aa0i2 E(G) and b = b, denotedby GH. In this paper, we will study about the locating chromatic numbers of thecartesian product of two paths, the cartesian product of paths and complete graphs, andthe cartesian product of two complete graphs.


2020 ◽  
Vol 20 (02) ◽  
pp. 2050007
Author(s):  
P. C. LISNA ◽  
M. S. SUNITHA

A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph G, denoted by φ(G), is the largest integer k such that G has a b-coloring with k colors. The b-chromatic sum of a graph G(V, E), denoted by φ′(G) is defined as the minimum of sum of colors c(v) of v for all v ∈ V in a b-coloring of G using φ(G) colors. The Mycielskian or Mycielski, μ(H) of a graph H with vertex set {v1, v2,…, vn} is a graph G obtained from H by adding a set of n + 1 new vertices {u, u1, u2, …, un} joining u to each vertex ui(1 ≤ i ≤ n) and joining ui to each neighbour of vi in H. In this paper, the b-chromatic sum of Mycielskian of cycles, complete graphs and complete bipartite graphs are discussed. Also, an application of b-coloring in image processing is discussed here.


2010 ◽  
Vol 02 (04) ◽  
pp. 437-444 ◽  
Author(s):  
I. WAYAN SUDARSANA ◽  
HILDA ASSIYATUN ◽  
ADIWIJAYA ◽  
SELVY MUSDALIFAH

Let H be a graph with the chromatic number h and the chromatic surplus s. A connected graph G of order n is called H-good if R(G, H) = (n - 1)(h - 1) + s. In this paper, we show that Pn is 2Km-good for n ≥ 3. Furthermore, we obtain the Ramsey number R(L, 2Km), where L is a linear forest. Moreover, we also give the Ramsey number R(L, Hm) which is an extension for R(kPn, Hm) proposed by Ali et al. [1], where Hm is a cocktail party graph on 2m vertices.


Sign in / Sign up

Export Citation Format

Share Document