scholarly journals BILANGAN KROMATIK LOKASI DARI GRAF P m P n ; K m P n ; DAN K , m K n

2013 ◽  
Vol 2 (1) ◽  
pp. 14
Author(s):  
Mariza Wenni

Let G and H be two connected graphs. Let c be a vertex k-coloring of aconnected graph G and let = fCg be a partition of V (G) into the resultingcolor classes. For each v 2 V (G), the color code of v is dened to be k-vector: c1; C2; :::; Ck(v) =(d(v; C1); d(v; C2); :::; d(v; Ck)), where d(v; Ci) = minfd(v; x) j x 2 Cg, 1 i k. Ifdistinct vertices have distinct color codes with respect to , then c is called a locatingcoloring of G. The locating chromatic number of G is the smallest natural number ksuch that there are locating coloring with k colors in G. The Cartesian product of graphG and H is a graph with vertex set V (G) V (H), where two vertices (a; b) and (a)are adjacent whenever a = a0and bb02 E(H), or aa0i2 E(G) and b = b, denotedby GH. In this paper, we will study about the locating chromatic numbers of thecartesian product of two paths, the cartesian product of paths and complete graphs, andthe cartesian product of two complete graphs.

Filomat ◽  
2020 ◽  
Vol 34 (10) ◽  
pp. 3275-3286
Author(s):  
Rachid Lemdani ◽  
Moncef Abbas ◽  
Jasmina Ferme

Given a graph G and a positive integer i, an i-packing in G is a subset W of the vertex set of G such that the distance between any two distinct vertices from W is greater than i. The packing chromatic number of a graph G, ??(G), is the smallest integer k such that the vertex set of G can be partitioned into sets Vi, i ? {1,..., k}, where each Vi is an i-packing. In this paper, we present some general properties of packing chromatic numbers of finite super subdivisions of graphs. We determine the packing chromatic numbers of the finite super subdivisions of complete graphs, cycles and some neighborhood corona graphs.


2019 ◽  
Vol 5 (2) ◽  
pp. 69-75
Author(s):  
Marsidi Marsidi ◽  
Ika Hesti Agustin

A graph  in this paper is nontrivial, finite, connected, simple, and undirected. Graph  consists of a vertex set and edge set. Let u,v be two elements in vertex set, and q is the cardinality of edge set in G, a bijective function from the edge set to the first q natural number is called a vertex local antimagic edge labelling if for any two adjacent vertices and , the weight of  is not equal with the weight of , where the weight of  (denoted by ) is the sum of labels of edges that are incident to . Furthermore, any vertex local antimagic edge labelling induces a proper vertex colouring on where  is the colour on the vertex . The vertex local antimagic chromatic number  is the minimum number of colours taken over all colourings induced by vertex local antimagic edge labelling of . In this paper, we discuss about the vertex local antimagic chromatic number on disjoint union of some family graphs, namely path, cycle, star, and friendship, and also determine the lower bound of vertex local antimagic chromatic number of disjoint union graphs. The chromatic numbers of disjoint union graph in this paper attend the lower bound.


2020 ◽  
Vol 20 (02) ◽  
pp. 2050007
Author(s):  
P. C. LISNA ◽  
M. S. SUNITHA

A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph G, denoted by φ(G), is the largest integer k such that G has a b-coloring with k colors. The b-chromatic sum of a graph G(V, E), denoted by φ′(G) is defined as the minimum of sum of colors c(v) of v for all v ∈ V in a b-coloring of G using φ(G) colors. The Mycielskian or Mycielski, μ(H) of a graph H with vertex set {v1, v2,…, vn} is a graph G obtained from H by adding a set of n + 1 new vertices {u, u1, u2, …, un} joining u to each vertex ui(1 ≤ i ≤ n) and joining ui to each neighbour of vi in H. In this paper, the b-chromatic sum of Mycielskian of cycles, complete graphs and complete bipartite graphs are discussed. Also, an application of b-coloring in image processing is discussed here.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 389
Author(s):  
Manal Ghanem ◽  
Hasan Al-Ezeh ◽  
Ala’a Dabbour

Let c be a proper k-coloring of a graph G. Let π = { R 1 , R 2 , … , R k } be the partition of V ( G ) induced by c, where R i is the partition class receiving color i. The color code c π ( v ) of a vertex v of G is the ordered k-tuple ( d ( v , R 1 ) , d ( v , R 2 ) , … , d ( v , R k ) ) , where d ( v , R i ) is the minimum distance from v to each other vertex u ∈ R i for 1 ≤ i ≤ k . If all vertices of G have distinct color codes, then c is called a locating k-coloring of G. The locating-chromatic number of G, denoted by χ L ( G ) , is the smallest k such that G admits a locating coloring with k colors. In this paper, we give a characterization of the locating chromatic number of powers of paths. In addition, we find sharp upper and lower bounds for the locating chromatic number of powers of cycles.


2020 ◽  
Vol 16 (3) ◽  
pp. 297-299
Author(s):  
Athirah Zulkarnain ◽  
Nor Haniza Sarmin ◽  
Hazzirah Izzati Mat Hassim

A graph is formed by a pair of vertices and edges. It can be related to groups by using the groups’ properties for its vertices and edges. The set of vertices of the graph comprises the elements or sets from the group while the set of edges of the graph is the properties and condition for the graph. A conjugacy class of an element  is the set of elements that are conjugated with . Any element of a group , labelled as , is conjugated to  if it satisfies  for some elements  in  with its inverse . A conjugacy class graph of a group   is defined when its vertex set is the set of non-central conjugacy classes of  . Two distinct vertices   and   are connected by an edge if and only if their cardinalities are not co-prime, which means that the order of the conjugacy classes of  and  have common factors. Meanwhile, a simple graph is the graph that contains no loop and no multiple edges. A complete graph is a simple graph in which every pair of distinct vertices is adjacent. Moreover, a  -group is the group with prime power order. In this paper, the conjugacy class graphs for some non-abelian 3-groups are determined by using the group’s presentations and the definition of conjugacy class graph. There are two classifications of the non-abelian 3-groups which are used in this research. In addition, some properties of the conjugacy class graph such as the chromatic number, the dominating number, and the diameter are computed. A chromatic number is the minimum number of vertices that have the same colours where the adjacent vertices have distinct colours. Besides, a dominating number is the minimum number of vertices that is required to connect all the vertices while a diameter is the longest path between any two vertices. As a result of this research, the conjugacy class graphs of these groups are found to be complete graphs with chromatic number, dominating number and diameter that are equal to eight, one and one, respectively.


2018 ◽  
Vol 2 (2) ◽  
pp. 82
Author(s):  
K. Kaliraj ◽  
V. Kowsalya ◽  
Vernold Vivin

<p>In a search for triangle-free graphs with arbitrarily large chromatic numbers, Mycielski developed a graph transformation that transforms a graph <span class="math"><em>G</em></span> into a new graph <span class="math"><em>μ</em>(<em>G</em>)</span>, we now call the Mycielskian of <span class="math"><em>G</em></span>, which has the same clique number as <span class="math"><em>G</em></span> and whose chromatic number equals <span class="math"><em>χ</em>(<em>G</em>) + 1</span>. In this paper, we find the star chromatic number for the Mycielskian graph of complete graphs, paths, cycles and complete bipartite graphs.</p>


2012 ◽  
Vol 11 (4) ◽  
pp. 43-58
Author(s):  
T N Janakiraman ◽  
M Poobalaranjani

Let G be a simple graph with vertex set V and edge set E. A Set S Í V is said to be a chromatic preserving set or a cp-set if χ(<S>) = χ(G) and the minimum cardinality of a cp-set in G is called the chromatic preserving number or cp-number of G and is denoted by cpn(G). A cp-set of cardinality cpn(G) is called a cpn-set. A subset S of V is said to be a dom- chromatic set (or a dc-set) if S is a dominating set and χ(<S>) = χ(G). The minimum cardinality of a dom-chromatic set in a graph G is called the dom-chromatic number (or dc- number) of G and is denoted by γch(G). The Kronecker product G1 Ù G2 of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph G with vertex set V1 x V2 and any two distinct vertices (u1, v1) and (u2, v2) of G are adjacent if u1u2 Î E1 and v1v2 Î E2. The Cartesian product G1 x G2 is the graph with vertex set V1 x V2 where any two distinct vertices (u1, v1) and (u2, v2) are adjacent whenever (i) u1 = u2 and v1v2 Î E2 or (ii) u1u2 Î E1 and v1 = v2. These two products have no common edges. They are almost like complements but not exactly. In this paper, we discuss the behavior of the cp-number and dc-number and their bounds for product of paths in the two cases. A detailed comparative study is also done.


Author(s):  
János Pach ◽  
Gábor Tardos ◽  
Géza Tóth

Abstract The disjointness graph G = G(𝒮) of a set of segments 𝒮 in ${\mathbb{R}^d}$ , $$d \ge 2$$ , is a graph whose vertex set is 𝒮 and two vertices are connected by an edge if and only if the corresponding segments are disjoint. We prove that the chromatic number of G satisfies $\chi (G) \le {(\omega (G))^4} + {(\omega (G))^3}$ , where ω(G) denotes the clique number of G. It follows that 𝒮 has Ω(n1/5) pairwise intersecting or pairwise disjoint elements. Stronger bounds are established for lines in space, instead of segments. We show that computing ω(G) and χ(G) for disjointness graphs of lines in space are NP-hard tasks. However, we can design efficient algorithms to compute proper colourings of G in which the number of colours satisfies the above upper bounds. One cannot expect similar results for sets of continuous arcs, instead of segments, even in the plane. We construct families of arcs whose disjointness graphs are triangle-free (ω(G) = 2), but whose chromatic numbers are arbitrarily large.


10.37236/796 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
T. Bartnicki ◽  
B. Brešar ◽  
J. Grytczuk ◽  
M. Kovše ◽  
Z. Miechowicz ◽  
...  

The game chromatic number $\chi _{g}$ is considered for the Cartesian product $G\,\square \,H$ of two graphs $G$ and $H$. Exact values of $\chi _{g}(K_2\square H)$ are determined when $H$ is a path, a cycle, or a complete graph. By using a newly introduced "game of combinations" we show that the game chromatic number is not bounded in the class of Cartesian products of two complete bipartite graphs. This result implies that the game chromatic number $\chi_{g}(G\square H)$ is not bounded from above by a function of game chromatic numbers of graphs $G$ and $H$. An analogous result is derived for the game coloring number of the Cartesian product of graphs.


10.37236/5442 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Joshua E. Ducey ◽  
Jonathan Gerhard ◽  
Noah Watson

Let $R_{n}$ denote the graph with vertex set consisting of the squares of an $n \times n$ grid, with two squares of the grid adjacent when they lie in the same row or column.  This is the square rook's graph, and can also be thought of as the Cartesian product of two complete graphs of order $n$, or the line graph of the complete bipartite graph $K_{n,n}$.  In this paper we compute the Smith group and critical group of the graph $R_{n}$ and its complement.  This is equivalent to determining the Smith normal form of both the adjacency and Laplacian matrix of each of these graphs.  In doing so we verify a 1986 conjecture of Rushanan.


Sign in / Sign up

Export Citation Format

Share Document