scholarly journals Sources of thymidine and analogs fueling futile damage-repair cycles and ss-gap accumulation during thymine starvation in Escherichia coli

DNA Repair ◽  
2019 ◽  
Vol 75 ◽  
pp. 1-17 ◽  
Author(s):  
T.V. Pritha Rao ◽  
Andrei Kuzminov
2008 ◽  
Vol 190 (17) ◽  
pp. 5841-5854 ◽  
Author(s):  
Helen Ting ◽  
Elena A. Kouzminova ◽  
Andrei Kuzminov

ABSTRACT Synthetic lethality is inviability of a double-mutant combination of two fully viable single mutants, commonly interpreted as redundancy at an essential metabolic step. The dut-1 defect in Escherichia coli inactivates dUTPase, causing increased uracil incorporation in DNA and known synthetic lethalities [SL(dut) mutations]. According to the redundancy logic, most of these SL(dut) mutations should affect nucleotide metabolism. After a systematic search for SL(dut) mutants, we did identify a single defect in the DNA precursor metabolism, inactivating thymidine kinase (tdk), that confirmed the redundancy explanation of synthetic lethality. However, we found that the bulk of mutations interacting genetically with dut are in DNA repair, revealing layers of damage of increasing complexity that uracil-DNA incorporation sends through the chromosomal metabolism. Thus, we isolated mutants in functions involved in (i) uracil-DNA excision (ung, polA, and xthA); (ii) double-strand DNA break repair (recA, recBC, and ruvABC); and (iii) chromosomal-dimer resolution (xerC, xerD, and ftsK). These mutants in various DNA repair transactions cannot be redundant with dUTPase and instead reveal “defect-damage-repair” cycles linking unrelated metabolic pathways. In addition, two SL(dut) inserts (phoU and degP) identify functions that could act to support the weakened activity of the Dut-1 mutant enzyme, suggesting the “compensation” explanation for this synthetic lethality. We conclude that genetic interactions with dut can be explained by redundancy, by defect-damage-repair cycles, or as compensation.


2006 ◽  
Vol 188 (14) ◽  
pp. 5286-5288 ◽  
Author(s):  
Pamela A. Morganroth ◽  
Philip C. Hanawalt

ABSTRACT Inhibition of DNA replication with hydroxyurea during thymine starvation of Escherichia coli shows that active DNA synthesis is not required for thymineless death (TLD). Hydroxyurea experiments and thymine starvation of lexA3 and uvrA DNA repair mutants rule out unbalanced growth, the SOS response, and nucleotide excision repair as explanations for TLD.


1965 ◽  
Vol 6 (3) ◽  
pp. 479-483 ◽  
Author(s):  
Susan Hollom ◽  
R. H. Pritchard

From studies involving inhibition of DNA synthesis in Hfr strains ofEscherichia coliK12, either by thymine starvation (Pritchard, 1963) or amino-acid starvation (Suit, Matney, Doudney & Billen, 1964), during mating withF−strains, it has been concluded that transfer of DNA from males to females can occur in the absence of DNA synthesis. This conclusion is at variance with the hypothesis (Jacob, Brenner & Cuzin, 1963) that the energy required for transfer is derived from the process of DNA replication. On the other hand, a second prediction from this hypothesis, that one polynucleotide chain of the DNA transferred during mating will have been synthesized during transfer, is strongly supported by recent experiments (Ptashne, 1965; Blinkova, Bresler & Lanzov, 1965; Gross & Caro, 1965).


Sign in / Sign up

Export Citation Format

Share Document