The mRNA Tether Model for Activation-Induced Deaminase and its Relevance for Ig Somatic Hypermutation and Class Switch Recombination

DNA Repair ◽  
2021 ◽  
pp. 103271
Author(s):  
Di Liu ◽  
Myron F. Goodman ◽  
Phuong Pham ◽  
Kefei Yu ◽  
Chih-Lin Hsieh ◽  
...  
PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1009288
Author(s):  
Sandrine Le Noir ◽  
Amélie Bonaud ◽  
Bastien Hervé ◽  
Audrey Baylet ◽  
François Boyer ◽  
...  

DNA lesions inflicted by activation-induced deaminase (AID) instrumentally initiate the processes reshaping immunoglobulin genes in mature B-cells, from local somatic hypermutation (SHM) to junctions of distant breaks during class switch recombination (CSR). It remains incompletely understood how these divergent outcomes of AID attacks are differentially and temporally focused, with CSR strictly occurring in the Ig heavy chain (IgH) locus while SHM concentrates on rearranged V(D)J regions in the IgH and Ig light chain loci. In the IgH locus, disruption of either the 3’Regulatory Region (3’RR) super-enhancer or of switch (S) regions preceding constant genes, profoundly affects CSR. Reciprocally, we now examined if these elements are sufficient to induce CSR in a synthetic locus based on the Igκ locus backbone. Addition of a surrogate “core 3’RR” (c3’RR) and of a pair of transcribed and spliced Switch regions, together with a reporter system for “κ-CSR” yielded a switchable Igκ locus. While the c3’RR stimulated SHM at S regions, it also lowered the local SHM threshold necessary for switch recombination to occur. The 3’RR thus both helps recruit AID to initiate DNA lesions, but then also promotes their resolution through long-distance synapses and recombination following double-strand breaks.


2005 ◽  
Vol 25 (5) ◽  
pp. 1730-1736 ◽  
Author(s):  
Kefei Yu ◽  
Deepankar Roy ◽  
Melina Bayramyan ◽  
Ian S. Haworth ◽  
Michael R. Lieber

ABSTRACT Activation-induced deaminase (AID) is essential for class switch recombination and somatic hypermutation, and it has the ability to deaminate single-stranded DNA at cytidines. Mammalian class switch regions form R-loops upon transcription in the physiological orientation. The displaced DNA strand of an R-loop is forced to wrap around the RNA-DNA hybrid; hence, it may not have complete exposure to proteins. A fundamental question concerns the extent to which AID is accessible to the displaced strand of a transcription-generated R-loop. We used a minimal R-loop to carry out high-resolution analysis of the precise locations of AID action. We found that AID deaminates on the displaced DNA strand across the entire length of the R-loop. Displaced strand locations with a WRC (where W is A or T and R is A or G) sequence are preferred targets, but there are clear exceptions. These WRC deviations may be due to steric constraints on the accessibility of AID to these sites as the displaced strand twists around the RNA-DNA duplex. This phenomenon may explain the lack of WRC site preference at the mutations surrounding class switch recombination junctions.


2003 ◽  
Vol 197 (10) ◽  
pp. 1291-1296 ◽  
Author(s):  
Sarah K. Dickerson ◽  
Eleonora Market ◽  
Eva Besmer ◽  
F. Nina Papavasiliou

Activation-induced deaminase (AID) is a protein indispensable for the diversification of immunoglobulin (Ig) genes by somatic hypermutation (SHM), class switch recombination (CSR), and gene conversion. To date, the precise role of AID in these processes has not been determined. Here we demonstrate that purified, tetrameric AID can deaminate cytidine residues in DNA, but not in RNA. Furthermore, we show that AID will bind and deaminate only single-stranded DNA, which implies a direct, functional link between hypermutation and transcription. Finally, AID does not target mutational hotspots, thus mutational targeting to specific residues must be attributed to different factors.


2014 ◽  
Vol 211 (5) ◽  
pp. 975-985 ◽  
Author(s):  
Pauline Rouaud ◽  
Alexis Saintamand ◽  
Faten Saad ◽  
Claire Carrion ◽  
Sandrine Lecardeur ◽  
...  

Classical class-switch recombination (cCSR) substitutes the Cμ gene with Cγ, Cε, or Cα, thereby generating IgG, IgE, or IgA classes, respectively. This activation-induced deaminase (AID)–driven process is controlled by the IgH 3′ regulatory region (3′RR). Regulation of rare IgD CSR events has been enigmatic. We show that μδCSR occurs in mouse mesenteric lymph node (MLN) B cells and is AID-dependent. AID attacks differ from those in cCSR because they are not accompanied by extensive somatic hypermutation (SHM) of targeted regions and because repaired junctions exhibit features of the alternative end-joining (A-EJ) pathway. In contrast to cCSR and SHM, μδCSR is 3′RR-independent, as its absence affects neither breakpoint locations in Sμ- and Sδ-like (σδ) nor mutation patterns at Sμ-σδ junctions. Although mutations occur in the immediate proximity of the μδ junctions, SHM is absent distal to the junctions within both Sμ and rearranged VDJ regions. In conclusion, μδCSR is active in MLNs, occurs independently of 3′RR-driven assembly, and is even dramatically increased in 3′RR-deficient mice, further showing that its regulation differs from cCSR.


2003 ◽  
Vol 170 (4) ◽  
pp. 1620-1624 ◽  
Author(s):  
Philip D. Bardwell ◽  
Alberto Martin ◽  
Edmund Wong ◽  
Ziqiang Li ◽  
Winfried Edelmann ◽  
...  

2002 ◽  
Vol 195 (4) ◽  
pp. 529-534 ◽  
Author(s):  
Hitoshi Nagaoka ◽  
Masamichi Muramatsu ◽  
Namiko Yamamura ◽  
Kazuo Kinoshita ◽  
Tasuku Honjo

Somatic hypermutation (SHM) and class switch recombination (CSR) cause distinct genetic alterations at different regions of immunoglobulin genes in B lymphocytes: point mutations in variable regions and large deletions in S regions, respectively. Yet both depend on activation-induced deaminase (AID), the function of which in the two reactions has been an enigma. Here we report that B cell stimulation which induces CSR but not SHM, leads to AID-dependent accumulation of SHM-like point mutations in the switch μ region, uncoupled with CSR. These findings strongly suggest that AID itself or a single molecule generated by RNA editing function of AID may mediate a common step of SHM and CSR, which is likely to be involved in DNA cleavage.


Sign in / Sign up

Export Citation Format

Share Document