scholarly journals Fine-Structure Analysis of Activation-Induced Deaminase Accessibility to Class Switch Region R-Loops

2005 ◽  
Vol 25 (5) ◽  
pp. 1730-1736 ◽  
Author(s):  
Kefei Yu ◽  
Deepankar Roy ◽  
Melina Bayramyan ◽  
Ian S. Haworth ◽  
Michael R. Lieber

ABSTRACT Activation-induced deaminase (AID) is essential for class switch recombination and somatic hypermutation, and it has the ability to deaminate single-stranded DNA at cytidines. Mammalian class switch regions form R-loops upon transcription in the physiological orientation. The displaced DNA strand of an R-loop is forced to wrap around the RNA-DNA hybrid; hence, it may not have complete exposure to proteins. A fundamental question concerns the extent to which AID is accessible to the displaced strand of a transcription-generated R-loop. We used a minimal R-loop to carry out high-resolution analysis of the precise locations of AID action. We found that AID deaminates on the displaced DNA strand across the entire length of the R-loop. Displaced strand locations with a WRC (where W is A or T and R is A or G) sequence are preferred targets, but there are clear exceptions. These WRC deviations may be due to steric constraints on the accessibility of AID to these sites as the displaced strand twists around the RNA-DNA duplex. This phenomenon may explain the lack of WRC site preference at the mutations surrounding class switch recombination junctions.

PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1009288
Author(s):  
Sandrine Le Noir ◽  
Amélie Bonaud ◽  
Bastien Hervé ◽  
Audrey Baylet ◽  
François Boyer ◽  
...  

DNA lesions inflicted by activation-induced deaminase (AID) instrumentally initiate the processes reshaping immunoglobulin genes in mature B-cells, from local somatic hypermutation (SHM) to junctions of distant breaks during class switch recombination (CSR). It remains incompletely understood how these divergent outcomes of AID attacks are differentially and temporally focused, with CSR strictly occurring in the Ig heavy chain (IgH) locus while SHM concentrates on rearranged V(D)J regions in the IgH and Ig light chain loci. In the IgH locus, disruption of either the 3’Regulatory Region (3’RR) super-enhancer or of switch (S) regions preceding constant genes, profoundly affects CSR. Reciprocally, we now examined if these elements are sufficient to induce CSR in a synthetic locus based on the Igκ locus backbone. Addition of a surrogate “core 3’RR” (c3’RR) and of a pair of transcribed and spliced Switch regions, together with a reporter system for “κ-CSR” yielded a switchable Igκ locus. While the c3’RR stimulated SHM at S regions, it also lowered the local SHM threshold necessary for switch recombination to occur. The 3’RR thus both helps recruit AID to initiate DNA lesions, but then also promotes their resolution through long-distance synapses and recombination following double-strand breaks.


2020 ◽  
Vol 40 (16) ◽  
Author(s):  
Ahrom Kim ◽  
Li Han ◽  
Kefei Yu

ABSTRACT Activation-induced cytidine deaminase (AID) initiates immunoglobulin (Ig) class switch recombination (CSR), somatic hypermutation (SHM), and gene conversion by converting DNA cytosines to uracils at specific genomic regions. In this study, we examined AID footprints across the entire length of an engineered switch region in cells ablated for uracil repair. We found that AID deamination occurs predominantly at WRC hot spots (where W is A or T and R is A or G) and that the deamination frequency remains constant across the entire switch region. Importantly, we analyzed monoallelic AID deamination footprints on both DNA strands occurring within a single cell cycle. We found that AID generates few and mostly isolated uracils in the switch region, although processive AID deaminations are evident in some molecules. The frequency of molecules containing deamination on both DNA strands at the acceptor switch region correlates with the class switch efficiency, raising the possibility that the minimal requirement for DNA double-strand break (DSB) formation is as low as even one AID deamination event on both DNA strands.


2005 ◽  
Vol 202 (6) ◽  
pp. 733-738 ◽  
Author(s):  
Vasco M. Barreto ◽  
Qiang Pan-Hammarstrom ◽  
Yaofeng Zhao ◽  
Lennart Hammarstrom ◽  
Ziva Misulovin ◽  
...  

Class switch recombination was the last of the lymphocyte-specific DNA modification reactions to appear in the evolution of the adaptive immune system. It is absent in cartilaginous and bony fish, and it is common to all tetrapods. Class switching is initiated by activation-induced cytidine deaminase (AID), an enzyme expressed in cartilaginous and bony fish that is also required for somatic hypermutation. Fish AID differs from orthologs found in tetrapods in several respects, including its catalytic domain and carboxy-terminal region, both of which are essential for the switching reaction. To determine whether evolution of class switch recombination required alterations in AID, we assayed AID from Japanese puffer and zebra fish for class-switching activity in mouse B cells. We find that fish AID catalyzes class switch recombination in mammalian B cells. Thus, AID had the potential to catalyze this reaction before the teleost and tetrapod lineages diverged, suggesting that the later appearance of a class-switching reaction was dependent on the evolution of switch regions and multiple constant regions in the IgH locus.


2003 ◽  
Vol 197 (12) ◽  
pp. 1767-1778 ◽  
Author(s):  
Bernardo Reina-San-Martin ◽  
Simone Difilippantonio ◽  
Leif Hanitsch ◽  
Revati F. Masilamani ◽  
André Nussenzweig ◽  
...  

Changes in chromatin structure induced by posttranslational modifications of histones are important regulators of genomic function. Phosphorylation of histone H2AX promotes DNA repair and helps maintain genomic stability. Although B cells lacking H2AX show impaired class switch recombination (CSR), the precise role of H2AX in CSR and somatic hypermutation (SHM) has not been defined. We show that H2AX is not required for SHM, suggesting that the processing of DNA lesions leading to SHM is fundamentally different from CSR. Impaired CSR in H2AX−/− B cells is not due to alterations in switch region transcription, accessibility, or aberrant joining. In the absence of H2AX, short-range intra-switch region recombination proceeds normally while long-range inter-switch region recombination is impaired. Our results suggest a role for H2AX in regulating the higher order chromatin remodeling that facilitates switch region synapsis.


2003 ◽  
Vol 197 (10) ◽  
pp. 1377-1383 ◽  
Author(s):  
Carol E. Schrader ◽  
Joycelyn Vardo ◽  
Janet Stavnezer

Mismatch repair proteins participate in antibody class switch recombination, although their roles are unknown. Previous nucleotide sequence analyses of switch recombination junctions indicated that the roles of Msh2 and the MutL homologues, Mlh1 and Pms2, differ. We now asked if Msh2 and Mlh1 function in the same pathway during switch recombination. Splenic B cells from mice deficient in both these proteins were induced to undergo switching in culture. The frequency of switching is reduced, similarly to that of B cells singly deficient in Msh2 or Mlh1. However, the nucleotide sequences of the Sμ-Sγ3 junctions resemble junctions from Mlh1- but not from Msh2-deficient cells, suggesting Mlh1 functions either independently of or before Msh2. The substitution mutations within S regions that are known to accompany switch recombination are increased in Msh2- and Mlh1 single-deficient cells and further increased in the double-deficient cells, again suggesting these proteins function independently in class switch recombination. The finding that MMR functions to reduce mutations in switch regions is unexpected since MMR proteins have been shown to contribute to somatic hypermutation of antibody variable region genes.


2004 ◽  
Vol 200 (1) ◽  
pp. 47-59 ◽  
Author(s):  
Ziqiang Li ◽  
Stefan J. Scherer ◽  
Diana Ronai ◽  
Maria D. Iglesias-Ussel ◽  
Jonathan U. Peled ◽  
...  

Somatic hypermutation and class switch recombination (CSR) contribute to the somatic diversification of antibodies. It has been shown that MutS homologue (Msh)6 (in conjunction with Msh2) but not Msh3 is involved in generating A/T base substitutions in somatic hypermutation. However, their roles in CSR have not yet been reported. Here we show that Msh6−/− mice have a decrease in CSR, whereas Msh3−/− mice do not. When switch regions were analyzed for mutations, deficiency in Msh6 was associated with an increase in transition mutations at G/C basepairs, mutations at RGYW/WRCY hotspots, and a small increase in the targeting of G/C bases. In addition, Msh6−/− mice exhibited an increase in the targeting of recombination sites to GAGCT/GGGGT consensus repeats and hotspots in Sγ3 but not in Sμ. In contrast to Msh2−/− mice, deficiency in Msh6 surprisingly did not change the characteristics of Sμ-Sγ3 switch junctions. However, Msh6−/− mice exhibited a change in the positioning of Sμ and Sγ3 junctions. Although none of these changes were seen in Msh3−/− mice, they had a higher percentage of large inserts in their switch junctions. Together, our data suggest that MutS homologues Msh2, Msh3, and Msh6 play overlapping and distinct roles during antibody diversification processes.


2003 ◽  
Vol 197 (10) ◽  
pp. 1291-1296 ◽  
Author(s):  
Sarah K. Dickerson ◽  
Eleonora Market ◽  
Eva Besmer ◽  
F. Nina Papavasiliou

Activation-induced deaminase (AID) is a protein indispensable for the diversification of immunoglobulin (Ig) genes by somatic hypermutation (SHM), class switch recombination (CSR), and gene conversion. To date, the precise role of AID in these processes has not been determined. Here we demonstrate that purified, tetrameric AID can deaminate cytidine residues in DNA, but not in RNA. Furthermore, we show that AID will bind and deaminate only single-stranded DNA, which implies a direct, functional link between hypermutation and transcription. Finally, AID does not target mutational hotspots, thus mutational targeting to specific residues must be attributed to different factors.


2014 ◽  
Vol 211 (5) ◽  
pp. 975-985 ◽  
Author(s):  
Pauline Rouaud ◽  
Alexis Saintamand ◽  
Faten Saad ◽  
Claire Carrion ◽  
Sandrine Lecardeur ◽  
...  

Classical class-switch recombination (cCSR) substitutes the Cμ gene with Cγ, Cε, or Cα, thereby generating IgG, IgE, or IgA classes, respectively. This activation-induced deaminase (AID)–driven process is controlled by the IgH 3′ regulatory region (3′RR). Regulation of rare IgD CSR events has been enigmatic. We show that μδCSR occurs in mouse mesenteric lymph node (MLN) B cells and is AID-dependent. AID attacks differ from those in cCSR because they are not accompanied by extensive somatic hypermutation (SHM) of targeted regions and because repaired junctions exhibit features of the alternative end-joining (A-EJ) pathway. In contrast to cCSR and SHM, μδCSR is 3′RR-independent, as its absence affects neither breakpoint locations in Sμ- and Sδ-like (σδ) nor mutation patterns at Sμ-σδ junctions. Although mutations occur in the immediate proximity of the μδ junctions, SHM is absent distal to the junctions within both Sμ and rearranged VDJ regions. In conclusion, μδCSR is active in MLNs, occurs independently of 3′RR-driven assembly, and is even dramatically increased in 3′RR-deficient mice, further showing that its regulation differs from cCSR.


1998 ◽  
Vol 188 (12) ◽  
pp. 2369-2374 ◽  
Author(s):  
Katharina Hein ◽  
Matthias G.O. Lorenz ◽  
Gregor Siebenkotten ◽  
Katja Petry ◽  
Rainer Christine ◽  
...  

Antibody class switching is mediated by somatic recombination between switch regions of the immunoglobulin heavy chain gene locus. Targeting of recombination to particular switch regions is strictly regulated by cytokines through the induction of switch transcripts starting 5′ of the repetitive switch regions. However, switch transcription as such is not sufficient to target switch recombination. This has been shown in mutant mice, in which the I-exon and its promoter upstream of the switch region were replaced with heterologous promoters. Here we show that, in the murine germline targeted replacement of the endogenous γ1 promoter, I-exon, and I-exon splice donor site by heterologous promoter and splice donor sites directs switch recombination in activated B lymphocytes constitutively to the γ1 switch region. In contrast, switch recombination to IgG1 is inhibited in mutant mice, in which the replacement does not include the heterologous splice donor site. Our data unequivocally demonstrate that targeting of switch recombination to IgG1 in vivo requires processing of the Iγ1 switch transcripts. Either the processing machinery or the processed transcripts are involved in class switch recombination.


Sign in / Sign up

Export Citation Format

Share Document