gene diversification
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 13)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Marina Alexeeva ◽  
Marivi Nabong Moen ◽  
Xiang Ming Xu ◽  
Anette Rasmussen ◽  
Ingar Leiros ◽  
...  

Uracil arises in cellular DNA by cytosine (C) deamination and erroneous replicative incorporation of deoxyuridine monophosphate opposite adenine. The former generates C → thymine transition mutations if uracil is not removed by uracil-DNA glycosylase (UDG) and replaced by C by the base excision repair (BER) pathway. The primary human UDG is hUNG. During immunoglobulin gene diversification in activated B cells, targeted cytosine deamination by activation-induced cytidine deaminase followed by uracil excision by hUNG is important for class switch recombination (CSR) and somatic hypermutation by providing the substrate for DNA double-strand breaks and mutagenesis, respectively. However, considerable uncertainty remains regarding the mechanisms leading to DNA incision following uracil excision: based on the general BER scheme, apurinic/apyrimidinic (AP) endonuclease (APE1 and/or APE2) is believed to generate the strand break by incising the AP site generated by hUNG. We report here that hUNG may incise the DNA backbone subsequent to uracil excision resulting in a 3´-α,β-unsaturated aldehyde designated uracil-DNA incision product (UIP), and a 5´-phosphate. The formation of UIP accords with an elimination (E2) reaction where deprotonation of C2´ occurs via the formation of a C1´ enolate intermediate. UIP is removed from the 3´-end by hAPE1. This shows that the first two steps in uracil BER can be performed by hUNG, which might explain the significant residual CSR activity in cells deficient in APE1 and APE2.


2021 ◽  
Vol 12 ◽  
Author(s):  
Iman Dalloul ◽  
Brice Laffleur ◽  
Zeinab Dalloul ◽  
Batoul Wehbi ◽  
Florence Jouan ◽  
...  

Activation-induced deaminase (AID) is the major actor of immunoglobulin (Ig) gene diversification in germinal center B-cells. From its first description, it was considered as mandatory for class switch recombination (CSR), and this discovery initiated a long quest for all of the AID-interacting factors controlling its activity. The mechanisms focusing AID-mediated DNA lesions to given target sequences remain incompletely understood with regards the detailed characterization of optimal substrates in which cytidine deamination will lead to double strand breaks (DSBs) and chromosomal cleavage. In an effort to reconsider whether such CSR breaks absolutely require AID, we herein provide evidence, based on deep-sequencing approaches, showing that this dogma is not absolute in both human and mouse B lymphocytes. In activated B-cells from either AID-deficient mice or human AID-deficient patients, we report an intrinsic ability of the IgH locus to undergo “on-target” cleavage and subsequent synapsis of broken regions in conditions able to yield low-level CSR. DNA breaks occur in such conditions within the same repetitive S regions usually targeted by AID, but their repair follows a specific pathway with increased usage of microhomology-mediated repair. These data further demonstrate the role of AID machinery as not initiating de novo chromosomal cleavage but rather catalyzing a process which spontaneously initiates at low levels in an appropriately conformed IgH locus.


Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1050
Author(s):  
Asim Azhar ◽  
Nasim A. Begum ◽  
Afzal Husain

The availability and adequate balance of deoxyribonucleoside triphosphate (dNTP) is an important determinant of both the fidelity and the processivity of DNA polymerases. Therefore, maintaining an optimal balance of the dNTP pool is critical for genomic stability in replicating and quiescent cells. Since DNA synthesis is required not only in genomic replication but also in DNA damage repair and recombination, the abnormalities in the dNTP pool affect a wide range of chromosomal activities. The generation of antibody diversity relies on antigen-independent V(D)J recombination, as well as antigen-dependent somatic hypermutation and class switch recombination. These processes involve diverse sets of DNA polymerases, which are affected by the dNTP pool imbalances. This review discusses the role of the optimal dNTP pool balance in the diversification of antibody encoding genes.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Shuai Wang ◽  
Xiaolin Liu ◽  
Zhongli Liu ◽  
Yugui Wang ◽  
Aijiang Guo ◽  
...  

AbstractTaenia hydatigena is a widespread gastrointestinal helminth that causes significant health problems in livestock industry. This parasite can survive in a remarkably wide range of intermediate hosts and affects the transmission dynamics of zoonotic parasites. T. hydatigena is therefore of particular interest to researchers interested in studying zoonotic diseases and the evolutionary strategies of parasites. Herein we report a high-quality draft genome for this tapeworm, characterized by some hallmarks (e.g., expanded genome size, wide integrations of viral-like sequences and extensive alternative splicing during development), and specialized adaptations related to its parasitic fitness (e.g., adaptive evolutions for teguments and lipid metabolism). Importantly, in contrast with the evolutionarily close trematodes, which achieve gene diversification associated with immunosuppression by gene family expansions, in T. hydatigena and other cestodes, this is accomplished by alternative splicing and gene loss. This indicates that these two classes have evolved different mechanisms for survival. In addition, molecular targets for diagnosis and intervention were identified to facilitate the development of control interventions. Overall, this work uncovers new strategies by which helminths evolved to interact with their hosts.


Author(s):  
Madison A. Herrboldt ◽  
Michael A. Steffen ◽  
Carissa N. McGouran ◽  
Ronald M. Bonett

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eudald Pascual-Carreras ◽  
Carlos Herrera-Úbeda ◽  
Maria Rosselló ◽  
Pablo Coronel-Córdoba ◽  
Jordi Garcia-Fernàndez ◽  
...  

AbstractThe forkhead box (Fox) genes encode transcription factors that control several key aspects of development. Present in the ancestor of all eukaryotes, Fox genes underwent several duplications followed by loss and diversification events that gave rise to the current 25 families. However, few Fox members have been identified from the Lophotrochozoa clade, and specifically from planarians, which are a unique model for understanding development, due to the striking plasticity of the adult. The aim of this study was to identify and perform evolutionary and functional studies of the Fox genes of lophotrochozoan species and, specifically, of the planarian Schmidtea mediterranea. Generating a pipeline for identifying Forkhead domains and using phylogenetics allowed us the phylogenetic reconstruction of Fox genes. We corrected the annotation for misannotated genes and uncovered a new family, the QD, present in all metazoans. According to the new phylogeny, the 27 Fox genes found in Schmidtea mediterranea were classified into 12 families. In Platyhelminthes, family losses were accompanied by extensive gene diversification and the appearance of specific families, the A(P) and N(P). Among the newly identified planarian Fox genes, we found a single copy of foxO, which shows an evolutionary conserved role in controlling cell death.


2020 ◽  
Vol 117 (40) ◽  
pp. 24957-24963 ◽  
Author(s):  
Christian T. Mayer ◽  
Jan P. Nieke ◽  
Anna Gazumyan ◽  
Melissa Cipolla ◽  
Qiao Wang ◽  
...  

B lymphocytes acquire self-reactivity as an unavoidable byproduct of antibody gene diversification in the bone marrow and in germinal centers (GCs). Autoreactive B cells emerging from the bone marrow are silenced in a series of well-defined checkpoints, but less is known about how self-reactivity that develops by somatic mutation in GCs is controlled. Here, we report the existence of an apoptosis-dependent tolerance checkpoint in post-GC B cells. Whereas defective GC B cell apoptosis has no measurable effect on autoantibody development, disruption of post-GC apoptosis results in accumulation of autoreactive memory B cells and plasma cells, antinuclear antibody production, and autoimmunity. The data presented shed light on mechanisms that regulate immune tolerance and the development of autoantibodies.


NAR Cancer ◽  
2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Shiva Safavi ◽  
Ariane Larouche ◽  
Astrid Zahn ◽  
Anne-Marie Patenaude ◽  
Diana Domanska ◽  
...  

Abstract In B lymphocytes, the uracil N-glycosylase (UNG) excises genomic uracils made by activation-induced deaminase (AID), thus underpinning antibody gene diversification and oncogenic chromosomal translocations, but also initiating faithful DNA repair. Ung−/− mice develop B-cell lymphoma (BCL). However, since UNG has anti- and pro-oncogenic activities, its tumor suppressor relevance is unclear. Moreover, how the constant DNA damage and repair caused by the AID and UNG interplay affects B-cell fitness and thereby the dynamics of cell populations in vivo is unknown. Here, we show that UNG specifically protects the fitness of germinal center B cells, which express AID, and not of any other B-cell subset, coincident with AID-induced telomere damage activating p53-dependent checkpoints. Consistent with AID expression being detrimental in UNG-deficient B cells, Ung−/− mice develop BCL originating from activated B cells but lose AID expression in the established tumor. Accordingly, we find that UNG is rarely lost in human BCL. The fitness preservation activity of UNG contingent to AID expression was confirmed in a B-cell leukemia model. Hence, UNG, typically considered a tumor suppressor, acquires tumor-enabling activity in cancer cell populations that express AID by protecting cell fitness.


2020 ◽  
Vol 217 (10) ◽  
Author(s):  
Verónica Delgado-Benito ◽  
Maria Berruezo-Llacuna ◽  
Robert Altwasser ◽  
Wiebke Winkler ◽  
Devakumar Sundaravinayagam ◽  
...  

The establishment of protective humoral immunity is dependent on the ability of mature B cells to undergo antibody gene diversification while adjusting to the physiological stressors induced by activation with the antigen. Mature B cells diversify their antibody genes by class switch recombination (CSR) and somatic hypermutation (SHM), which are both dependent on efficient induction of activation-induced cytidine deaminase (AID). Here, we identified PDGFA-associated protein 1 (Pdap1) as an essential regulator of cellular homeostasis in mature B cells. Pdap1 deficiency leads to sustained expression of the integrated stress response (ISR) effector activating transcription factor 4 (Atf4) and induction of the ISR transcriptional program, increased cell death, and defective AID expression. As a consequence, loss of Pdap1 reduces germinal center B cell formation and impairs CSR and SHM. Thus, Pdap1 protects mature B cells against chronic ISR activation and ensures efficient antibody diversification by promoting their survival and optimal function.


2020 ◽  
Author(s):  
Kaori Hiraga ◽  
Petr Mejzlik ◽  
Matej Marcisin ◽  
Nikita Vostrosablin ◽  
Anna Gromek ◽  
...  

AbstractProtein engineering is the discipline of developing useful proteins for applications in research, therapeutic and industrial processes by modification of naturally occurring proteins or by invention of de novo proteins. Modern protein engineering relies on the ability to rapidly generate and screen diverse libraries of mutant proteins. However, design of mutant libraries is typically hampered by scale and complexity, necessitating development of advanced automation and optimization tools that can improve efficiency and accuracy. At present, automated library design tools are functionally limited or not freely available. To address these issues, we developed Mutation Maker, an open source mutagenic oligo design software for large-scale protein engineering experiments. Mutation Maker is not only specifically tailored to multi-site random and directed mutagenesis protocols, but also pioneers bespoke mutagenic oligo design for de novo gene synthesis workflows. Enabled by a novel bundle of orchestrated heuristics, optimization, constraint-satisfaction and backtracking algorithms, Mutation Maker offers a versatile toolbox for gene diversification design at industrial scale. Supported by in-silico simulations and compelling experimental validation data, Mutation Maker oligos produce diverse gene libraries at high success rates irrespective of genes or vectors used. Finally, Mutation Maker was created as an extensible platform on the notion that directed evolution techniques will continue to evolve and revolutionize current and future-oriented applications.


Sign in / Sign up

Export Citation Format

Share Document